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Preface

Before you plunge into Quick Calculus, perhaps we ought to tell you what
it is supposed to do. Quick Calculus should teach you the elementary
techniques of differential and integral calculus with a minimum of
wasted effort on your part; it is designed for you to study by yourself.
Since the best way for anyone to learn calculus is to work problems, we
have included many problems in this book. You will always see the
solution to your problem as soon as you have finished it, and what you do
next will depend on your answer. A correct answer generally sends you to
new material, while an incorrect answer sends you to further explana-
tions and perhaps another problem.

We hope that this book will be useful to many different people. The
idea for it grew out of the problem of teaching college freshmen enough
calculus so that they could start physics without waiting for a calculus
course in college. However, it soon became apparent that the book would
be useful in many other ways. For instance, both graduate and un-
dergraduate students in economics, business, medicine, and the social
sciences need to use some elementary calculus. Many of these students
have never taken calculus, or want to review the course they did take;
they should be able to put this book to good use. Ambitious high school
students who want to get a head start on their college studies should find
Quick Calculus just the thing. Unlike most calculus texts, it emphasizes
technique and application rather than rigorous theories and is therefore
particularly suited for introducing the subject. Beginning calculus stu-
dents who want a different and simpler view of the subject should find the
book helpful either for self-instruction or for classroom use. We particu-
larly hope that this book will be of use to those people who simply want to
learn calculus for the fun of it. )

Because of the variety of backgrounds of those who will use this book,
we start with a review of some parts of algebra and trigonometry which
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are useful in elementary calculus. If you remember your high school
preparation in these subjects, you will sail through this material in little
time, whereas if you have had little math, or have long been away from
math, you will want to spend more time on this review. As you will see,
one of the virtues of the book is its flexibility—the time you spend on each
portion depends on your particular needs. We hope that this will save you
time so that you will find the book’s title appropriate.

Daniel Kleppner
Norman Ramsey

Cambridge, Massachusetts



Preface to the Second Edition

The hope expressed in the preface to the first edition that Quick Calculus
would be useful to many different people has been fulfilled, for over a
quarter of a million copies have been put to use. The major change in the
second edition is in the treatment of integration. Chapter 3 has been
completely rewritten; much of the material has been simplified, and a
new topic has been added—numerical integration. In addition, numer-
ical exercises to be worked with a hand-held calculator have been in-
troduced throughout the book. These are not an essential part of the text,
but we hope that readers who have a calculator will find them interesting
and useful. Many minor improvements have been made, and the refer-
ences have been updated.

Daniel Kleppner
Norman Ramsey

Cambridge, Massachusetts
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CHAPTER ONE
A Few Preliminaries

In this chapter the plan of the book is explained, and some elementary
mathematical concepts are reviewed. By the end of the chapter you will
be familiar with:

® The definition of a mathematical function

® Graphs of functions

o The properties of the most widely used functions: linear and
quadratic functions, trigonometric functions, exponentials,
and logarithms

Some problems in Quick Calculus require the use of a scientific calcu-
lator—a calculator that provides values for trigonometric functions and
logarithms. However, these problems, which are clearly marked, are
optional. You can skip them and master the text without a calculator,
although working the numerical problems will help to increase your
insight.

Getting Started

In spite of its formidable name, calculus is not a particularly difficult
subject. Of course you won’t become a master in it overnight, but with
diligence you can learn its basic ideas fairly quickly.

This manual will get you started in calculus. After working through it,
you ought to be able to handle many problems and you should be pre-
pared to learn more elaborate techniques if you need them. But remem-
ber that the important word is working, though we hope you find that
much of the work is fun.

(continued)

1



2 A Few Preliminaries

Most of your work will be answering questions and doing problems.
The particular route you follow will depend on your answers. Your
reward for doing a problem correctly is to go straight on to new material.
On the other hand, if you make an error, the solution will usually be
explained and you will get additional problems to see whether you have
caught on. In any case, you will always be able to check your answers
immediately after doing a problem.

Many of the problems have multiple choice answers. The possible
choices are grouped like this: [a | b | ¢ | d]. Choose an answer by cir-
cling your choice. The correct answer can be found at the bottom of the
next left-hand page. Some questions must be answered with written
words. Space for these is indicated by a blank, and you will be referred to
another frame for the correct answer.

If you get the right answer but feel you need more practice, simply
follow the directions for the wrong answer. There is no premium for doing
this book in record time.

Go on to frame 2.

In case you want to know what'’s ahead, here is a brief outline of the
book: this first chapter is a review which will be useful later on; Chapter
2 is on differential calculus; and Chapter 3 covers integral calculus.
Chapter 4 contains a concise outline of all the earlier work. There are two
appendixes—one giving formal proofs of a number of relations we use in
the book and the other discussing some supplementary topics. In addi-
tion, thereis a list of extra problems, with answers, and a section of tables
you may find useful.

A word of caution about the next few frames. Since we must start with
some definitions, the first section has to be somewhat more formal than
most other parts of the book.

First we review the definition of a function. If you are already familiar
with this, and with the idea of independent and dependent variables, you
should skip to frame 14. (In fact, in this chapter there is ample opportun-
ity for skipping if you already know the material. On the other hand,
some of the material may be new to you, and a little time spent on review
can be a good thing.)

Go to 3.
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Functions

The definition of a function makes use of the idea of a set. Do you know
what a set is? If so, go to 4. If not, read on.

A set is a collection of objects—not necessarily material objects—
described in such a way that we have no doubt as to whether a particular
object does or does not belong to it. A set may be described by listing its
elements. Example: the set of numbers, 23, 7, 5, 10. Another example:
Mars, Rome, and France.

We can also describe a set by a rule, for example, all the even positive
integers (this set contains an infinite number of objects). Another set
defined by a rule is the set of all planets in our solar system.

A particularly useful set is the set of all real numbers, which includes
all numbers such as 5,—4, 0, 2, —3.482, /2. The set of real numbers does
not include quantities involving the square root of negative numbers
(such quantities are called complex numbers; in this book we will be
concerned only with real numbers).

The mathematical use of the word “set” is similar to the use of the
same word in ordinary conversation, as “a set of golf clubs.”

Go to 4.

In the blank below, list the elements of the set which consists of all the
odd integers between —10 and +10.

Go to 5 for the correct answer.

Here are the elements of the set of all odd integers between —10 and
+10:

-9,-7,-8,-5,-1,1,3,5,7,9.

Go to 6.
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Now we are ready to talk about functions. Here is the definition.

A function is arule that assigns to each element in a set A one and only
one element in a set B.

The rule can be specified by a mathematical formula such asy = 2, or
by tables of associated numbers, for instance, the temperature at each
hour of the day. If x is one of the elementsin set A, then the element in set
B that the function fassociates with x is denoted by the symbol f(x). [This
symbol f(x) is the value of f at x. It is usually read as “f of x.”]

The set A is called the domain of the function.

The set B of all possible values of f(x) as x varies over the domain is
called the range of the function.

In general, A and B need not be restricted to sets of real numbers.
However, as mentioned in frame 3, in this book we will be concerned only
with real numbers.

Go to 7.

For example, for the function f(x) = x?, with the domain being all real
numbers, the range is

Go to 8.

The range is all nonnegative real numbers. For an explanation, goto 9.
Otherwise,

Skip to 10.

Recall that the product of two negative numbers is positive. Thus for
any real value of x, positive or negative, x* is positive. When x is 0, x? is
also 0. Therefore, the range of f(x) = x? is all nonnegative numbers.

Go to 10.
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10

Our chief interest will be in rules for evaluating functions defined by
formulas. If the domain is not specified, it will be understood that the
domain is the set of all real numbers for which the formula produces a
real value, and for which it makes sense. For instance,

(@) fx) = Vx  Range =
() f@ =  Range =

Go to 11.
11

f(x) is real for x nonnegative; so the answer to (a) is all nonnegative
real numbers.

1/x is defined for all values of x except zero; so the range in (b) is all real
numbers except zero.

Go to 12.

12

When a function is defined by a formula such as f(x) = ax® + b, x is
called the independent variable and f(x) is called the dependent variable.
One advantage of this notation is that the value of the dependent vari-
able, say for x = 3, can be indicated by f(3).

Often, however, a single letter is used to represent the dependent
variable, as in

y = f).
Here x is the independent variable and y is the dependent variable.

Go to 13.

13

In mathematics the symbol x frequently represents an independent
variable, foften represents the function, and y = f(x) usually denotes the
dependent variable. However, any other symbols may be used for the
function, the independent variable, and the dependent variable. For

(continued)



6 A Few Preliminaries

example, we might have z = H(r) which isread as “zequals H of r.” Here r
is the independent variable, z is the dependent variable, H is the func-
tion.

Now that we know what a function means, let’s move along to a
discussion of graphs.

Go to 14.

Graphs

14

If you know how to plot graphs of functions, you can skip to frame 19.
Otherwise,

Go to 15.

15

A convenient way to represent a function defined by y = f(x) istoplot a
graph. We start by constructing coordinate axes. First we construct a
pair of mutually perpendicular intersecting lines, one horizontal, the
other vertical. The horizontal line is often called the x-axis, and the
vertical line the y-axis. The point of intersection is the origin, and the
axes together are called the coordinate axes.

y-axis
10 +
5 -

b+ — - x-axis

1
1 1 1
-4 -3 -2 -10 1 2 3 4

-5+

-10+




Graphs 7

Next we select a convenient unit of length and, starting from the
origin, mark off a number scale on the x-axis, positive to the right and
negative to the left. In the same way we mark off a scale along the y-axis
with positive numbers going upward and negative downward. The scale
of the y-axis does not need to be the same as that for the x-axis (as in the
drawing). In fact, y and x can have different units, such as distance and
time.

Go to 16.

16

We can represent one specific pair of values associated by the function
in the following way: Let a represent some particular value for the
independent variable x, and let b indicate the corresponding value of
y = f). Thus, b = f(a).

y-axis

2 a
I x-axis

We now draw a line parallel to the y-axis at distance a from that axis,
and another line parallel to the x-axis at distance b. The point P at which
these two lines intersect is designated by the pair of values (a, ) for x and
y, respectively.

The number a is called the x-coordinate of P, and the number b is called
the y-coordinate of P. (Sometimes the x-coordinate is called the abscissa,
and the y-coordinate is called the ordinate.) In the designation of a typical
point by the notation (a, b) we will always designate the x-coordinate first
and the y-coordinate second.

As a review of this terminology, encircle the correct answers below.
For the point (5, —3):

x-coordinate: -51-31315]
y-coordinate: [-51-31315]

(continued)
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(Remember that the answers to multiple choice questions are ordinarily
given at the bottom of the next left-hand page. Always check your
answers before continuing.)

Go to 17.

17

The most direct way to plot the graph of a function y = f(x) is to make a
table of reasonably spaced values of x and of the corresponding values of
y = f(x). Then each pair of values (x, y) can be represented by a point as in
the previous frame. A graph of the function is obtained by connecting the
points with a smooth curve. Of course, the points on the curve may be
only approximate. If we want an accurate plot, we just have to be very
careful and use many points. (On the other hand, crude plots are pretty
good for many purposes.)

Go to 18.

18

As an example, here is a plot of the function y = 3x% A table of values of
x and y is shown and these points are indicated on the graph.

X y-axis
-3|27 [ 0 T
-2 12 2 L
-1 3
0| 0 20
19 \ . /

1
3127 \w /

‘'S4
Xx-axis

-3=-2-1 0 1 2

To test yourself, encircle the pair of coordinates that corresponds to the
point P indicated in the figure.

[(3, 27) | (27, 3) | none of these]

Answers: (16) 5, -3
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Check your answer. If incorrect, study frame 16 once again and then go
to 19. If correct,

Go on to 19.

19

Here is a rather special function. It is called a constant function and
assigns a single fixed number c to every value of the independent vari-
able, x. Hence, f(x) = c.

y-axis

o
(0, 3)

x-axis

This is a peculiar function since the value of the dependent variable is
the same for all values of the independent variable. Nevertheless, the
relation f(x) = c assigns exactly one value of f(x) to each value of x as
required in the definition of a function. All the values of f(x) happen to be
the same.

Try to convince yourself that the graph of the constant function
y = f(x) = 3 is a straight line parallel to the x-axis passing through the
point (0, 3) as shown in the figure.

Go to 20.

20

Another simple function is the absolute value function. The absolute
value of x is indicated by the symbols | x | The absolute value of a
number x determines the size or magnitude of the number without
regard to its sign. For example,

[-31=13]=3.

(continued)
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Now we will define| x |in a general way. But first we should recall the
inequality symbols:

a > b means a is greater than b.

a = b means a is greater than or equal to b.
a < b means a is less than b.

a < b means a is less than or equal to b.

With this notation we can define the absolute value function, | x |, by
the following two rules:

|x|= X ifx?O,
[— ifx < 0.

Go to 21.

21
A good way to show the behavior of a function is to plot its graph.

Therefore, as an exercise, plot a graph of the function y = | x | in the
accompanying figure.

y-axis

L O )

x-axis

EEEREL NEEEE
EEREERERRER

To check your answer, go to 22.

Answer: (18) (3, 27)
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22

The correct graph for| x |is

_ W & o

-5-4-3-2-10 1 2 3 45

This can be seen by preparing a table of x and y values as follows:

These points may be plotted as in frames 16 and 18 and the lines drawn
with the results in the above figure.

With this introduction on functions and graphs, we are now going to
take a quick look at some elementary functions which are important.
You should become familiar with them.

These functions are linear, quadratic, trigonometric, exponential, and
logarithmic functions.

Go to 23.

Linear and Quadratic Functions

23

A function defined by an equation in the formy = mx + b, where m and
b are constants, is called a linear function because its graph is a straight
line. This is a simple and useful function, and you should really become
familiar with it.

(continued)
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Here is an example: Encircle the letter which identifies the graph of

7 = Gkl [AlBI|C]

y-axis

x-axis

The correct answer is on the bottom of the next page. If you missed this or
if you do not feel entirely sure of the answer, go to 24.

Otherwise, go to 25.

24

You were given the function y = 3x — 3. The table below gives a few
values of x and y.

= t feaf—g—t— X-2XIS
=5=4-3-2-1 12345
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A few of these points are shown on the graph, and a straight line has
been drawn through them. This is line B of the figure in frame 23.

Go to 25.
25

Here is the graph of a typical linear function. Let us take any two

different points on the line, (x5, ¥2) and (x;, ¥;). We define the slope of the
line in the following way:

Y2—Y1  y-axis

Slope = ——

(x2.y2)

y2=y1
(x,51)

x2-x1

x-axis

The idea of slope will be very important in our later work, so let’s spend a
little time learning more about it.

Go to 26.
26

If the x and y scales are the same, as in the figure, then the slope is the
ratio of vertical distance to horizontal distance as we go from one point on
the line to another, providing we take the sign of each line segment as in
the equation of frame 25. If the line is vertical, the slope is infinite (or,
more strictly, undefined). It should be clear that the slope is the same for
any pair of two separate points on the line.

y-axis

B._

7 Vertical

6 distance

=Yy2-N

5_

41

:7&10

- Horizontal distance = x2-xy
I I S I S IO Y

o001 234567

Go to 27.
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27

If the vertical and horizontal scales are not the same, the slope is still
defined by

vertical distance
horizontal distance’

Slope =

but now the distance is measured using the appropriate scale. For in-
stance, the two figures below may look similar, but the slopes are quite
different. In the first figure the x and y scales are identical, and the slope
is Y. In the second figure the y scale has been changed by a factor of 100,
and the slope is 50.

Since the slope is the ratio of two lengths, the slope is a pure number if
the lengths are pure numbers. However, if the variables have different
dimensions, the slope will also have a dimension.

Below is a plot of the distance traveled by a car vs. the amount of
gasoline consumed.

888

Distance (miles)
- N
o o

o

(=]

¥ 1 1% 2
Gasoline (gallons)

Here the slope has the dimension or unit of miles/gallon (or miles per
gallon). What is the slope of the line shown?

Slope = {10 | 20 | 30 | 40] miles/gallon

If right, go to 29.
Otherwise, go to 28.

Answer: (23) B
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28

To evaluate the slope, let us find the coordinates of two points on the
line.

83

(=

Distance (miles)

-_nN W S
o

(=)

o
o

by 5T 2

Gasoline (gallons)
For instance, A has the coordinates (2 gallons, 40 miles) and B has the
coordinates (%2 gallon, 10 miles). Therefore, the slope is

(40—10) miles _ 30 miles
(2-'%)gallons % gallons

= 20 miles per gallon.

Of course, we would have obtained the same value for the slope no matter
which two points we used, since the ratio of vertical distance to horizon-
tal distance is the same everywhere.

Go to 29.

29

Here is another way to find the slope of a straight line if its equation is
given. If the linear function is in the form y = mx + b, then the slope is
given by

Y2—X1

Slope 5 H

Substituting in the above expression for y, we have

(mxy + b) — (mx, + b)=mx2—mx1=m(x2—x1)=
X9 — Xy Xo — Xy Xo — Xy

Slope =

What is the slope of y = 7x — 5?

%1% 1-51-71517]

If right, go to 31.
Otherwise, go to 30.
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30

The equation y = 7x — 5 can be written inthe formy = mx + bifm =17
and b = -5. Since slope = m, the line given has a slope of 7.

Go to 31.

31

The slope of a line can be positive (greater than 0), negative (less than
0), or 0. An example of each is shown graphically below.

y & Yy

Positive slope Negative slope 0 slope

Note how a line with positive slope arises in going from left to right,
while a line with negative slope falls in going from left to right. (It was
pointed out in frame 26 that the slope of a vertical line is not defined.)

Indicate whether the slope of the graph of each of the following equa-
tions is positive, negative, or zero by encircling your choice.

Equation Slope
1. y=2x-5 [+ ]|-1]0]
2. y=-3x [+ 1-10]
3. p=q-2 [+ 1-10]
4. y=4 [+ =10

If all right, go to 33.
If you made any mistakes, go to 32.

32
Here are the explanations to the questions in frame 31.

In frame 29 we saw that for a linear equation in the formy = mx + bthe
slope is m.

Answer: (27) 20 miles/gallon (29) 7
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1. y=2x—5. Here m = 2 and the slope is 2. Clearly this is a positive
number. See Figure 1 below.

2. y=-3x. Here m = —3. The slope is—3, which is negative. See Figure
2 below.

3. p=q-2.Inthisequationthe variablesarepandg, rather thany and
x. Written in the form p = mq + b, it is evident that m = 1, which is
positive. See Figure 3 below.

4. y = 4.This is an example of a constant function. Here m = 0,b=4,
and the slope is 0. See Figure 4 below.

&/
SR S
- x
=5 % E
-5F
Positive slope Negative slope Positive slope 0 slope
y=2x-5 y=-3x p=q-—-2 y=4
Figure 1 Figure 2 Figure 3 Figure 4

Go to 33.
33

Here is an example of a linear equation in which the slope has a
familiar meaning. The graph below shows the position S on a straight
road of a car at different times. The position S = 0 means the car is at the
starting point.

40

S (miles)

{ | ! |
% ” 1

t (hours)

Try to guess the correct word to fill in the blank below:

The slope of the line has the same value as the car’s

To see the correct answer, go to 34.




18 A Few Preliminaries

34

The slope of the line has the same value as the car’s velocity (or its
speed).

The slope is given by the ratio of the distance traveled to the time
required. But, by definition, the velocity is also the distance traveled
divided by the time. Thus the value of the slope of the line is equal to the
velocity.

Go to 35.
35

Now let’s look at another type of equation. An equation in the form
y = ax? + bx + ¢, where qa, b, and c are constants, is called a quadratic
function and its graph is called a paerabola. Two typical parabolas are
shown in the figure.

y-axis y-axis

x-axis

——t——————— x-axis

Go to 36.
36

The values of x at y = 0, shown by x, and x; in the figure on the left in
frame 35 correspond to values of x which satisfy ax® + bx + ¢ = 0 and are
called the roots of the equation. Not all quadratic equations have real
roots. (For example, the curve on the right represents an equation with
no real value of x when y = 0.)

Although you will not need to find the roots of any quadratic equation
later in this book, you may want to know the formula anyway. If you
would like to see a discussion of this, go to frame 37.

Otherwise, skip to frame 39.

Answers: 31) +,—, +,0
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37

The equation ax? + bx + ¢ = 0 has two roots, and these are given by

_=b+ VW —dac __-b- V¥ - dac

x = 3
e 2a ’ 2 2a

The subscripts 1 and 2 serve merely to identify the two roots. They can be
omitted, and the above two equations can be summarized by

b+ Vb% — 4dac
2a ’

We will not prove these results, though they can be checked by sub-
stituting the values for x in the original equation.

Here is a practice problem on finding roots: Which answer correctly
gives the roots of 3x — 2x* = 1?

(a) Y@ + V17); %@ - V17)

(b) -1;-%
(c) Vi, -V
d 1;%

Encircle the letter of the correct answer.
falblecldl]

If you got the right answer, go to 39.
If you missed this, go to 38.

38

Here is the solution to the problem in frame 37.
The equation 3x — 2x> = 1 can be written in the standard form

22%-3x+1=0.

(continued)
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Herea=2,b=-3,c=1.

x=%pb:Vﬁ-mm=§p@mey-[?7?T]

)

=381
n=;3+n=ix4=1
_1 =l o1
=g@-D=7x2=7

Go to 39.
39

This ends our brief discussion of linear and quadratic functions. Per-
haps you would like some more practice on these topics before continu-
ing. If so, try working review problems 1-5 at the back of the book. In
Chapter 4 there is a concise summary of the material we have had so far,
which you may find useful.

Whenever you are ready, go to 40.

Trigonometry

40

Trigonometry involves angles, so here is a quick review of the units we
use to measure angles. There are two important units: degrees and

radians.
A

Degrees: Angles are often measured in degrees with 360 degrees
(written 360°) corresponding to one complete revolution. [The degree is
further subdivided into 60 minutes (60'), and the minute is subdivided

Answer: (37) d
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into 60 seconds (60"). However, we will not need to use such fine di-
visions here.] It follows from this that a semicircle contains 180°. Which
of the following angles is equal to the angle 6 (Greek letter theta) shown
in the figure?

[25° | 45° | 90° | 180°]

If right, go to 42.
Otherwise, go to 41.

41

To find the angle 6, let’s first look at a related example.

90°

The angle shown is a right angle. Since there are four right anglesin a
full revolution, it is apparent that the angle equals

360°
4

=90°.

The angle 6shown in frame 40 is just half as big as the right angle; thus
it is 45°.

Here is a circle divided into equal segments by three straight lines.
Which angle equals 240°?

Go to 42.
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42

The second unit of angular measure, and the most useful for calculus,
is the radian.

[

A

To find the value of an angle in radians, we draw a circle of radius r, about
the vertex, O, of the angle so that it intersects the sides of the angle at two
points, shown in the figure as A and B. The length of the arc between A
and B is designated by s. Then,

6 (in radians) === M.
r radius

To see whether you have caught on, answer this question: There are
360 degrees in a circle; how many radians are there?

(1121727 360/7

If right, go to 44.
Otherwise, go to 43.

43

The circumference of a circle is d or 27rr, where d is the diameter and
r is the radius.
s=r

,. =S
< [
s=2nr

The length of an arc going completely around a circle is the circumfer-
ence, 27r, so the angle enclosed is 27r/r = 27 radians, as shown in the

Answers: (40) 45° (41)c



Trigonometry 23

figure on the left. In the figure on the right the angle 6 subtends an arc
s = r. Encircle the answer which gives 6.

[Lrad | Yarad | Y2rad | 7 rad | none of these]

Go to 44.

44

Because many of the relations we develop later are much simpler
when the angles are measured in radians, we will stick to the rule that all
angles will be in radians unless they are marked in degrees.

Sometimes the word radian is written in full, sometimes it is abbrevi-
ated to rad, but usually it is omitted entirely. Thus: 8 = 0.6 means 0.6
radian; 27° means 27 degrees; /3 rad means /3 radians.

Go on to 45.

45

Since 27 rad = 360°, the rule for converting angles from degrees to
radians is

_ 360°
1rad= o
Conversely,
1° = 27 rad
360 -

Try the following problems (encircle the correct answer):

60°= [27/3 | w/3 | m/4 | 7/6] rad
mld= [22%° | 45° | 60° | 90°)

Which angle is closest to 1 rad? (Remember that 7 = 3.14. .. )
[30° | 45° | 60° | 90°]

If right, go to 47.
If you made any mistake, go to 46.
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46

Here are the solutions to the problems in frame 45. From the formulas
in frame 45, one obtains

2nrad _27rad =

60°=60X —F5— 360 —T—?rad.
T _m _ 360° 360° 5
Irad—4x o 8 =45°.
1 ad__360

Since 27 is just a little greater than 6, 1 rad is slightly less than 360°/6 =
60°. (A closer approximation to the radian is 57°18'.) The figure below
shows all the angles in this question.

Go to 47.

47

In the circle shown, CG is perpendicular to AE and

A
arc FA. '2‘
Answers: (42) 27 (43) 1 rad

(45) /3, 45 degrees, 60°

arc AB
arc AD

arc BC
arc DF
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(Arc AB means the length of the arc along the circle between A and B,

going the shortest way.)
We will designate angles by three letters. For example, ZAOB (read as
“angle AOB”) designates the angle between OA and OB. Try the follow-

ing:
£AOD = [60° | 90° | 120° | 150° | 180°]
£FOH = [15° | 30° | 45° | 60° | 75° | 90 degrees]
LHOB=[1/4|1| m/2 | w/4 | =/8]

If you did all these correctly, go to 49.
If you made any mistakes, go to 48.

48

Since arc AD = arc DF = arc FA, and since the sum of their angles is
360°, LAOD = 360°/3 = 120°.

£FOA = 120°, £GOA = 90°, £GOH = 45°.
Thus
LFOH = LFOG + LGOH = 30° + 45° = 75°.
£HOB = L HOA + LAOB = 45° + 45° = 90°.
Now try the following:

90°= 27 | w/6 | w/2 | w/8 | 1/4)
3w = [240° | 360° | 540° | 720°]
m/6= [15° | 30° | 45° | 60° | 90° | 120°]

Go to 49.

49

Rotations can be counterclockwise or clockwise. By choosing a conven-
tion for the sign of an angle, we can indicate which direction is meant. An

(continued)
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angle formed by rotating in a counterclockwise direction is positive; an
angle formed by moving in a clockwise direction is negative.
Here is a circle of radius » drawn with x- and y-axes, as shown:

y-axis

-\A
/B

x-axis

We will choose the positive x-axis as the initial side and, for the
purpose of this section, we will measure angles from the initial to the
final or terminal side. As an example, the angle A is positive and B is
negative, as shown in the figure.

Go to 50.
50

Our next task is to review the trigonometric functions. One use of
these functions is to relate the sides of triangles, particularly right
triangles, to their angles.

y-axis
(x,5) 9= ——

M

x-axis

We will get to this application shortly. However, the trigonometric
functions can be defined in a more general and more useful way.
Do you know the general definitions of the trigonometric functions of

Answers: (47) 120°, 75°, w/2
(48) 7/2, 540°, 30°
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angle 6? If you do, test yourself with the quiz below. If you don’t, go right
on to frame 51.

The trigonometric functions of @ can be expressed in terms of the
coordinates x and y and the radius of the circle,r = Vx2 + y2 These are
shown in the figure. Try to fill in the blanks (the answers are in frame

51):

sinf = ______ cot =
cosf =___ sec § =
tan 6 = csc § =

Go to frame 51 to check your answers.

51

Here are the definitions of the trigonometric functions:

y-axis

yr (
|
L \ Xx-axis

sine: sin @ =l, cotangent: cot § = . =1,
r tan 0 y

cosine: cos 0 =£, secant: sec § = 1 =L,
r Y cos 8§ x

tangent: tan 9=—‘Z-, cosecant: csc § = .1 =L.
x sinf y

Note that the last three are merely reciprocals of the first three.

For the angle shown in the figure, x is negative and y is positive
(r=Vx2 + y2and is always positive) so that cos 6, tan 6, cot 6, and sec 8

are negative.

After you have studied these, go to 52.
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52
Below is a circle with a radius of 5. The point shown is (-3, —4). On the

basis of the definition in the last frame, you should be able to answer the
following:

sin 6 = (% | % | % | =% | =% | %] "
cos O =[3% | % | % | -4%|-% | 4] ’.
tan 0= [3% | ¥ | % | =% | =% | 45] v

(=3, =49

If all right, go to 55.
Otherwise, go to 53.

53

Perhaps you had difficulty because you did not realize that x and y
have different signs in different quadrants (quarters of the circle) while
r, a radius, is always positive. Try this problem.

Indicate whether the function required is positive or negative, for each
of the figures, by checking the correct box.

Figure A Figure B Figure C
+ | - +| - +| -
sin 6
cos 0
tan 6

See frame 54 for the correct answers.
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54

Here are the answers to the questions in frame 53.

Figure A Figure B Figure C
45 = + | - + | -
sin 6 J v J
cosf |/ v v
tang | / v v
Go to 55.

55

In the figure both 6 and — 6 are shown. The trigonometric functions for
these two angles are simply related. Can you do these problems? Encircle
the correct sign.

sin(-6) = [+ | =] sin 6 ‘m
cos(-8) = [+ | =] cos 6 /)

W,
tan(-0)= [+ | -] tan 6 ‘W

Go to 56.

56

There are many relationships among the trigonometric functions. For
instance, using x2 + y% = r2, we have

{continued)
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Try these:

1. sin28 + cos2 8 = [sec® 8| 1 | tan® 8 | cot? 6]

2. 1+tan26=[1]tan?8 | cot? 8 | sec? 6]

3. sin?@—cos20=[1-2cos®8|1-2sin®6] cot?2 8| 1]

If any mistakes, go to 57.
Otherwise, go to 58.

57

Here are the solutions to the problems in frame 56.

x? x2+y2 £

2
. r
1. sm20+coszo=%g+—gr ==z =;_'g=1.

This is an important identity which is worth remembering. The other
solutions are

sin?  cos’f+sin®8 1

— 2
= = =sec“ 8.
cos” @ cos® @ cos” 6

2. 1+tan26=1+

3. sin?—-cos®9=1-cos®8—cos?6=1-2cos?é.

Go to 58.

58

b

The trigonometric functions are particularly useful when applied to
right triangles (triangles with one 90° or right angle). In this case 8 is

Answers: (52) -4, —%, ¥3
(55) -, +, -
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always acute (less than 90° or 77/2). You can then write the trigonometric
functions in terms of the sides a, b of the right triangle shown, and its
hypotenuse c. Fill in the blanks.

sinf = cot 8 =
cosf =________ sec § =
tan 6 = csc 8 =

Check your answer in 59.

59

The answers are:

. a _ opposite side b adjacent side
Al () == (05 () BT = =
¢ hypotenuse a opposite side
_ b _ adjacent side _ ¢ _ hypotenuse
E L hypotenuse * €€ ST adjacent side ’
_a _ opposite side _ ¢ _ hypotenuse
Enessy adjacent side’  °°C 0=z opposite side °

These results follow from the definitions in frame 51, providing we let
a, b, and c correspond to y, x, and r, respectively. (Remember that here 8is
less than 90°.) If you are not familiar with the terms opposite side,
adjacent side, and hypotenuse, they should be evident from the figure.

Go to 60.
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60

The following problems refer to the figure shown. (¢ is the Greek letter
“phi.” The symbol between sides a and b indicates a right angle.)

cos 8 =[blc|alc|clal|cb] bla| alb)
tan@ = [b/c | alc | cla | c/b | bla | alb]

If all right, go to 62.
Otherwise, go to 61.

61

You may have become confused because the triangle was drawn in a
new position. Review the definitions in 51, and then do the problems
below:

sin@ =Un|nl| mn!|lmll|namllm]

tan ¢ = [Un | nll | min | m/l | nim | IIm])

If you missed either of these, you will have to put in more work
learning and memorizing the definitions.

Meanwhile go to 62.

62

It is helpful to be familiar with the trigonometric functions of 30°, 45°,
and 60°. The triangles for these angles are particularly simple.

Answers: (56) 1, sec® 6, 1 — 2 cos? ¢



Try these problems:

cos 45° = [1/2 | V2 | 2V2 | 2]
sin 30° = [3 | V3/2 | 2/3 | 1/2]
sin 45° = [1/2 | V2 | V272 | 2]
tan 30°=[1 | V3 | 1/V3 | 2]
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Make sure you understand these problems. Then go to 63.

63

Many calculators provide values of trigonometric functions. With such
a calculator, it is quite simple to plot enough points to make a good graph
of the function. If you have such a calculator, plot sin for values between
0° and 360° on the coordinate axes below, and then compare your result
with frame 64. If you do not have a suitable calculator, go directly to 64
and check that sin @ has the correct values for the angles you know.

sin 8

1.0

08

0.6

04

0.2

! 30——60—— 90——120——150~—180—|- 210} 240270

300330 360

-0.2

04

-0.6

-0.8

-1.0

6 (degrees)

Go to 64.
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64
Here is the graph of the sine function.

sin 6
1.0
0.8 A h
0.6
0.4

0.2~ AN y 4
0

022060~ 90 1201501180210 240 270 300330 360

-0.4 AN
0.6
0.8
-1.0 e

4 (degrees)

Go to 65.

Answers: (60) b/c,al/b
61) Un, mil  (62) 1/V2, 1/2, 1/V2, 1/V3
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Try to decide which graph represents each function.

cos8: [albdlcldlelfl| none of thesel
tan @ [a|lblcld]elfl| noneof thesel
sin(<0): [al blcldlelfl| none of these)
tan(-6): [a | bl cld]elfl| none of thesel

If you got these all right, go to 67.
Otherwise go to 66.

66

Knowing the values of the trigonometric functions at a few important
points will help you identify them. Try these (< is the symbol for infinity):

sin0° =[0]1]-1]-x] +cx]
€0s90° =[0]1]-1]-| +x]
tan45° = [0 | 1| -1 | - | +o]
sin 30° =[1 | 1/2 | V3 | V3/2]
c0s 60° = (1| 1/2 | V3 | V3/2]

Go to 67.
67

Because the angle 6 + 27 is equivalent to f as far as the trigonometric
functions are concerned, we can add 2 to any angle without changing
the value of the trigonometric functions. Thus, the sine and cosine
functions repeat their values whenever 8increases by 2; we say that the
functions are periodic in 6 with a period of 27 or with a period of 360°.

6

E
\

2w +6

{continued)
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Using this property, you can extend the graph of sin 8 in frame 64 to
the following. (For variety, the angle here is in radians.)

sing

1'7\
0 ! | /1\1 L m —
}‘ T 1r\3_’721r 57 31r\/y41r EL SW\IL;
2 2 2 2 2 2
-1

Go to 68.
68

It is helpful to know the sine and cosine of the sum and the difference of
two angles.

Do you remember the formulas from previous studies of trigonometry?
If not, go to 69. If you do, try the quiz below.

sin(f + ¢) =
cos(8 + ¢) =

Go to 69 to see the correct answer.

69

Here are the formulas. They are derived in Appendix Al.

sin(6 + ¢) = sin 0 cos ¢ + cos 0 sin ¢,

cos(8 + ¢) = cos 6 cos ¢ — sin 6 sin ¢.

[Note that tan(6 + ¢) and cot(8 + ¢) can be obtained from these formulas
and the relation tan 8 = (sin 6)/(cos 6).]

Answers: (65) b, c, d, none of these;
(66) 0,0, 1, ¥, ¥
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By using what you have already learned, circle the correct sign in each
of the following:

(a) sin(@—¢) = [+ | -] sin Bcos ¢ [+ | =] cos Osin ¢
(b) cos(§—¢) =[+ | =] cos 8cos ¢ [+ | =] sin 6sin ¢

If right, go to 71.
If wrong, go to 70.

70

If you made a mistake in problem 68, you should recall from frame 55
that

sin(— @) = — sin ¢,

cos(—¢@) = + cos ¢.

Then
sin(f — ¢) = sin 6 cos(—¢) + cos 0 sin(—¢)
= sin 6 cos ¢ — cos 6 sin ¢,
cos(8 — @) = cos 6 cos(—¢) — sin 0 sin(—¢)
= cos 6 cos ¢ + sin 6 sin ¢.
Go to 71.
71

By using the expressions for sin(6 + ¢) and cos(6 + ¢), one can obtain
the formulas for sin 26 and cos 26. Simply let § = ¢. Fill in the blanks.

sin 260 =

cos 26 =

See 72 for the correct answers.
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72

sin 260 = 2 sin 6 cos 6,

cos 20 = cos® 6 — sin? @
=1-2sin? 9

= 2cos? §— 1.

[Note, by convention, (sin )2 is usually written sin® 6, and (cos )? is
usually written cos® 6.]

Go to 73.

73

It is often useful and convenient to use the inverse trigonometric
function, which is the value of the angle for which the trigonometric
function has a specified value. The inverse sine of x is denoted by sin™ x.
(Warning: This notation is standard, but it can be confusing. sin™ x
always represents the inverse sine of x, not 1/sin x. The latter would be
written (sin x). An older notation for sin™! x is arcsin x.)

For example, since the sine of 30° is %, sin™! % = 30°. Note, however,
that the sine of 150° is also Y2. Furthermore, the trigonometric functions
are periodic: there is an endless sequence of angles (all differing by 360°)
having the same value for the sine, cosine, etc.

Because the definition of function (frame 6) specifies the assignment of
one and only one value of f(x) for each value of x, the range of the inverse
trigonometric function must be suitably restricted.

The inverse functions are defined by

y=sin?x  Domain: -1 <x < +1  Range: —g <y< +1§T
y=cos'x Domain:-1<zx < +1 Range: 0 <y < 7
y=tan"'x Domain:—» <x < +®  Range: —g <y< +7§r

Go to 74.

Answers: (69a) +, —; (69b) +, +
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74
Try these problems:
(@) sin™}(1/V2) = [30° | 60° | /4 | m/2)

) tantl=1[n/6| w4 | w/3 | =]
© cos(1/2) =[n6 | wid | w/3 | «]

If you have a calculator with inverse trigonometric functions, try the
following:

(d) sin™ 0.8 =[46.9 | 28.2 | 53.1 | 67.2) degrees
(e) tan'12 =[0.82 | 1.49 | 1.62 | 1.83] radians
() cos0.05 =[4.3 | 12.6 | 77.2 | 87.1] degrees

Check your answers, and then go on to the next section, which is the
last one in our reviews.

Go to 75.

Exponentials and Logarithms

75

Are you already familiar with exponentials? If not, go to 76. If you are,
try this short quiz.
a®=1[5%| 5loga !l alog5 | none of thesel
ab*c=[a® X a° | a® + a° | ca® | (b + c) log a]
&laf = [(f- g) log a | @’ | &% | none of these]
a® =10 11| a | none of these]
(@®° = [a® x a° | a®*¢ | a* | none of these]

If any mistakes, go to 76.
Otherwise, go to 77.
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76

By definition @™, where m is a positive integer, is the product of m
factors of a. Hence,

22=2x2x2=8 and 10%2 = 10 x 10 = 100.
Furthermore, by definition a=™ = 1/a™. It is easy to see, then, that

a™ x a* = a™*",

m

a _
a_n = g™ n,
am
a®= i (m can be any integer),

(am)n = amn,
(ab)™ = a™b™.
Note that a”*" is evaluated as a™*™; the expression in the exponential
is always evaluated before any other operation is carried out.
If you have not yet tried the quiz in frame 75, go to 75. Otherwise,

Go to 77.

77

Here are a few problems:

32=1[6| 8 | 9 | none of these]
13=[1]3| % | none of these]

2% =1[-6 | % | =9 | none of these]
3
%5 =1[4% | 4% | 167! | none of these]

If you did these all correctly, go to 79.
If you made any mistakes, go to 78.

Answers: (74) (a) 7/4, (p) ©/4, (c) 7/3, (d) 53.1°, (e) 1.49, (f) 87.1°
(75) None of these, a® x a¢, a5, 1, a®*



Exponentials and Logarithms 41

78

Below are the solutions to problem 77. Refer back to the rules in 76 if
you have trouble understanding the solution.

32=3x3=09,
=1x1x1=1 (1™ = 1 for any m),
2-3 = 1:1
28
43 1

3-5 — 4-2 = 161
® =4 4 16 167,

Now try these:

(333 =[113"°| 3% | none of these]

NN
52—[3 | 3 | 57¢ | none of these]
=[12 | 16 | 25 | none of these]
Check your answers and try to track down any mistakes.

Then go to 79.

79

Here are a few more problems.

10°=[0 | 1| 10]
107 =[-1] 1] 0.1]
0.00003=[% x 10-3 | 10-% | 3 x 10-5]
0.4x104=[4 x 10-5 | 4 x 102 | 2.5 x 10°]
3 x10°7_ 1 10 4 4
W[XIO |5X10’0.5X10]

If these were all correct, go to 81.
If you made any mistakes, go to 80.
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80

Here are the solutions to the problems in 79:

10
0 — =
100 = ;o =1
10 = X = o1,

10

0.00003 =0.00001 X 3 = 3 x 1075,
0.4%x1074=(4 x 10°!) x 10~* = 4 x 10-5,
3x107 3 _1077

= _l —-7+3 _ -
6x10°-6 10 —2><10 =05 x 1074

Go to 81.
81

Let’s briefly review fractional exponents. If b” = a, then b is called the
nth root of @ and is written b = a'/”. Hence 164 = (fourth root of 16) = 2
That is, 2* = 16.

If y = a™", where m and n are integers, then y = [¢/"]™. For instance.

82/3 = (81/3)2 — 22 = 4,

Try these:
27-28 = [Yig | Va1 | Y6 | —18 | none of these]
16 =112 |86 | 64]
If right, go to 84.
If wrong, go to 82.
82

27-23 = 2792 = 32 = 15,

163/4 = (161/4)3 = 23 = 8.

Answers: (77) 9, 1, %, 16~ (78) 39, (54)%, 28

(79) 1, 0.1, 3 x 1075, 4 x 1075, 0.5 x 10~
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Do these problems:

25%2 = [125 | 5 | 15 | none of these)
(0.00001)~%° = [0.001 | 1000 | 107% | 10-25]

If your answers were correct, go to 84.
Otherwise, go to 83.

83

Here are the solutions to the problems in 82.

25%2 = (2512)3 = 5% = 125,
(0.00001)~%% = (10-%)-%5 = 10%5® = 103 = 1000.

Here are a few more problems. Encircle the correct answers.

(24 X 10-5)13 = [3400 | %6 x 1072 | %a x 1074],
(49 x 10-9H¥ = [V7/10 | (10 x 7)~2 | V7/1000].

Go to 84 after checking your answers.

84

Although our original definition of a™ only applied to integral values
of m, we have also defined (@™)!/” = @™", where both m and n are integers.
Thus we have a meaning for a”, where p is either an integer or a fraction
(ratio of integers).

As yet we do not know how to evaluate a” if p is an irrational num-
ber, such as wor V2. However, we can approximate an irrational number
as closely as we desire by fraction. For instance, 7 is approximately
31,416/10,000. This is in the form m/n, where m and n are integers, and
we know how to evaluate it. Therefore, y = a*, where x is any real
number, is a meaningful expression in the sense that we can evaluate it
as accurately as we please. (A more rigorous treatment of irrational
exponents can be based on the properties of suitably defined logarithms.)

Try the following problem.

a’a*
@

x/3 | a1r+x-3 3 mx (1r+x)/3]

=[a a a

If right, go to 86.
If wrong, go to 85.
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85

The rules given in frame 76 apply here as if all exponents were
integers. Hence

X
a_éa—‘: a1r+x—3

Here is another problem:
w2 x 27 =[1 | (2m)?2" | 272" ™ | none of these]

If right, go to 87.
If wrong, go to 86.

86

w2 x 27 is the product of two different numbers to two different
exponents. None of our rules apply to this and, in fact, there is no way to
simplify this expression.

Now go to 87.

87

If you do not clearly remember logarithms, go to 88. If you do, try the
following test.

Let x be any positive number, and let log x represent the log of x to the
base 10. Then:

lolog L=

Go to 88 for the correct answer.

Answers: (81) Y5, 8 (82) 125, 1000
(83) 3/400, V7/10  (84) @™ =3
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88

The answer to 87 is x; in fact we will take the logarithm of x to the base
10 to be defined by

10 * = x.

That is, the logarithm of a number x is the power to which 10 must be
raised to produce the number x itself. This definition only applies for
x > 0. Here are two examples:
100 = 10?, so log 100 = 2;
0.001 = 1073, so log 0.001 = -3.

Now try these problems:

log 1,000,000 = [1,000,000 | 6 | 60 | 600]
logl = [0]1] 10| 100]

If right, go to 90.
If wrong, go to 89.

89

log 1,000,000
log 1

I

log 10% = 6 (check, 106 = 1,000,000),
log 10° = 0 (check, 10° = 1).

1]

Try the following problems:

log(10%10-3) = [107 | 1 | 10 | 7 | 70]
log 10” = [10n | n | 10" | 10/n]
log 107" = [-10n | —n | =10" | —10/n]

If you had trouble with these, review the material in this section.
Make sure you understand these problems.

Then go to 90.
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90

Here are three important relations for manipulating logarithms. a
and b are any positive numbers:

log ab = log a + log b,
log(a/b) = log a — log b,

log a” = n X log a.

If you are familiar with these rules, go to 92. If you want to see how
they are derived,

Go to 91.

91
We can derive the required rules as follows. From the definition of
log x, a = 10'°¢° and b = 10'°¢%, Consequently, from the properties of
exponentials,
ab = lologa X 1ologb = lologa-#logb.

Taking the log of both sides, and again using log 10* = x, gives

log ab = log 10'°€°*1°8% = Jog q + log b.

Similarly,
a/b = 1008a1Q-loeb = (loga-logb
log(a/b) = log a - log b
Likewise,
o = (10'89)" = 10" losa
so that

log a” = n X log a.
Go to 92.

Answer: (85) None of these (88)6,0, (89)7,n,—-n
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92

Try these problems:

Iflogn =-3, n=[% | Yaoo | Y000}
108 1°0=[10%° | 20 | 100 | none of these]

log 1000 3
Tog 100 —[§ [11-1110]}
If right, go to 94.
If wrong, go to 93.
93
108" = n,soiflog n = -3, n = 1073 = Yi000.

For the same reason,

10%°8 1°° =100,

log 1000 _log 10° 3
log 100 log 102 2°

Try these problems:

Yolog16=1[2 |4 | 8 | log 2 | log 4]
log(log 10) =10 |1 | 0 [ -1 | -10]

Go to 94.

94

In this section we have discussed only logarithms to the base 10.
However, any positive number except 1 can be used as a base. Bases other
than 10 are usually indicated by a subscript. For instance, the logarithm
of 8 to the base 2 is written log, 8. This has the value of 3 since 2% = 8. If
our base is denoted by r, then the defining equation for log, x is

rlog, x= x.l

(continued)
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All the relations explained in frame 91 are true for logarithms to any
base (provided, of course, that the same base is used for all the logarithms
in each equation).

We shall later discuss natural logarithms, for which the base is the
number e = 2.71828 . . .. Natural logarithms are usually designated by
the symbol Inx = log, x. Many calculators give both log x [i.e., log;o x] and
In x.

Go to 95.

95
From the definition of logarithm in the last frame we can obtain the
rule for changing logarithms from one base to another, for instance from
base 10 to the base e.
Take log;, of both sides of the defining equation '** = x,
log(e'™*) = log x.
Because log x* = n log x (frame 91), this gives

In x loge = log x

or

In x =108 %
log e’
The numerical value of log e is 1/2.303 . . ., so

Inx=(2.303...)log x.

If you have a calculator which evaluates both In x and log x, check this
relation for a few values of x.

Go to 96.

Answers: (92) Y1000, 100, % (93) log 4, 0
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96

This concludes our review. In order to do actual computations involv-
ing trigonometric functions and logarithms, you will need their numer-
ical values. You can obtain these from a scientific calculator or from
published tables such as those in the The Handbook of Chemistry and
Physics (Chemical Rubber Publishing Co.). Also, scientific computers
invariably have programs for generating these functions.

Before going on, there are a few features of this book you ought to know
about. The last chapter, Chapter 4, summarizes the first three chapters
to help you review what you have learned. Take a look at that summary if
you feel the need. In addition, starting on page 245, there is a collection of
review problems with answers. In addition to the index at the back of the
book, there is a separate index of symbols on page 261.

As soon as you are ready, go to Chapter 2.




CHAPTER TWO
Differential Calculus

In this chapter you will learn

What is meant by the limit of a function

How the derivative of a function is defined

How to interpret derivatives graphically

Some shortcuts for finding derivatives

How to recognize the derivatives of some common functions
How to find the maximum or minimum values of functions
How to apply differential calculus to a variety of problems

Limits

97

Before tackling differential calculus, we must learn about limits. The
idea of a limit may be new to you, but it is at the heart of calculus and it is
important to understand the material in this section before going on.
Once you understand limits, you should be able to grasp the ideas of
differential calculus quite readily.

Limits are so important in calculus that we will discuss them from two
different points of view. First, we will discuss limits from an intuitive
point of view. Then, we will give a precise mathematical definition.

Go to 98.

50
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98

Here is a little bit of mathematical shorthand which will be useful in
this section.

Suppose a variable x has values lying in an interval with the following
properties:

1. The interval surrounds some number a.

2. The difference between x and a is less than another number B.

3. xdoes not take the particular value a. (We will see later why this
point is excluded.)

The above three statements can be summarized by the following:

lx-al>0 (This statement means x cannot have the value a.)
|[x—al<B (The magnitude of the difference between x and a is less
than B.)

These relations can be combined in the single statement:
0<|x-al<B.
(If you need to review the symbols used here, see frame 20.)

The values of x which satisfy 0 < |x — a| < B are indicated by the
interval along the x-axis shown in the figure.

Allowed values of x
(x = a excluded)

X=axis

Go to 99.
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99

We begin our discussion of limits with an example. We are going to
work with the equationy = f(x) = x2, as shown in the graph. P is the point
on the curve corresponding tox = 3,y = 9.

y-axis
25 (: 25

20
15

10

a=al"
x-axis

Let us concentrate on the behavior of y for values of x in an interval
about x = 3. For reasons which we shall see shortly, it is important to
exclude the particular point of interest P, and to remind us of this, the
point is encircled on the curve.

We start by considering values of y corresponding to values of x in an
interval about x = 3, lying between x = 1 and x = 5. With the notation of
the last frame, this can be written as 0 <|x - 3| < 2. This interval for x is
shown by line A in the figure. The corresponding interval for y is shown
by line A' and includes points between y = 1 and y = 25, except y = 9.

A smaller interval for x is shown by line B. Here 0 <|x—3|< 1, and the
corresponding interval for y is 4 < y < 16, with y = 9 excluded.

The interval for x shown by the line Cis given by 0 <|x—3| < 0.5. Write
the corresponding interval for y in the blank below, assuming y = 9 is
excluded.

In order to find the correct answer, go to 100.

100
The interval for y which corresponds to 0 <|x - 3| < 0.5 is

6.25 < y < 12.25
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which you can check by substituting the values 2.5 and 3.5 for x in y = x2
in order to find the values of y at either end point.

So far we have considered three successively smaller intervals of x
aboutx = 3 and the corresponding intervals of y. Suppose we continue the
process. The drawing shows the ploty = x2 for values of x between 2.9 and
3.1. (This is an enlarged piece of the graph in frame 99. Over the short
distance shown the parabola looks practically straight.)

Yy
950
90| p
L
L
85
Y] I
29 30 31

Three small intervals of x around x = 3 are shown along with the
corresponding interval in y. The table below shows the values of y,
corresponding to the boundaries of x at either end of the interval. (The
last entry is for an interval too small to show on the drawing.)

Interval Corresponding
of x interval of y
1-5 1-25
2-4 4-16
2.5-3.5 6.25-12.25
2.9-3.1 8.41-9.61
2.95-3.05 8.70-9.30
2.99-3.01 8.94-9.06
2.999-3.001 8.994-9.006

Go to 101.
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101

We hope it is apparent from the discussion in the last two frames that
as we diminish the interval for x around x = 3, the values for y = x2
cluster more and more closely about y = 9. In fact, it appears that we can
makethe values for y cluster as closely as we please about y = 9 by merely
limiting x to a sufficiently small interval about x = 3. Because this is
true, we say that the limit of x%, as x approaches 3, is 9, and we write this

limx? = 9.
x—3

Let’s put this in more general terms.

If a function f(x) is defined for values of x about some fixed number a,
and if, as x is confined to smaller and smaller intervals about a, the
values of f(x) cluster more and more closely about some specific number
L, the number L is called the limit of f(x) as x approaches a. The state-
ment that “the limit of f(x) as x approaches a is L” is customarily
abbreviated by

limf(x) = L.

In the example at the top of the page f(x) = x%,a = 3,and L = 9.

The important idea in the definition is that the intervals we use lie
around the point of interest a, but that the point itself is not included.
In fact, f(a), the value of the function at @, may be entirely different from
Li_gmf(x), as we shall see.

Go to 102.

102

You may be wondering why we have been giving such a complicated
discussion of an apparently simple problem. Why bother with li1131 x2=9

when it is obvious that x2 = 9 for x = 3?
The reason is that often the value of a function for a particularx = a is
not defined, whereas the limit as x approaches a is perfectly well defined.

For instance at # = 0 the function sn; & has the value %, which is

meaningless. When we get to frame 110 we shall see that

sin 8 _

lim 1.
60
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As another illustration consider

_x%2-1
fl) = x—1"
F _ _1-1 _0 L. .
orx=1,f(1) = 1i-1-0 which is not defined. However we can divide

by x — 1 provided x is not equal to 1, and we obtain

_x?-1_G+Dx-1
x-1 x—-1

flx) =x+ 1.

Therefore, even though f(1) is not defined,

linl1 flx)= lirrll(x +1)=2.

Formal justification of these steps is given in Appendix A2, along
with a number of rules for handling limits. There is no need to read the
appendix now unless you are really interested.

We could also have obtained the above result graphically by studying
the graph of the function in the neighborhood of x = 1 as we did in frame
99.

Go to 103.

103

To see whether you have caught on, find the limit of the following
slightly more complicated functions by procedures similar to the above.
(You will probably have to work these out on paper. Both of them involve
a little algebraic manipulation.)

2
@ m%l—ﬂllxl-llm
3
(b) grgl“—(ljci=[1lx|3|-3]

If right, go to 105.
Otherwise, go to 104.
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104

Here are the solutions to the problems in 103:

2 2
lim(1+x) —1=1im(1+2x+x ) -1

(@) x~0 X x—0 X
2
= limZEE i@ + 0= lim2 +lim x = 2.
x—0 x—0 x—0 =0

3
(b) liml-(l + X _ lim1—(1 + x)(1 + x)(1 + x)

x—0 X x—0 X
_ 2 3
- lir511 (1 + 3xx+ 3x° + x )lil'f)l (-3 — 3x — x2)

= lirg(—s) +1ing(—3x) +1irg(—x2) = —al

Again, if you would like justification of the steps used in these solu-
tions, see Appendix A2.

Go to 105.

105

So far we have discussed limits using expressions such as “confined to
a smaller and smaller interval” and “clustering more and more closely.”
These expressions convey the intuitive meaning of a limit, but they are
not precise mathematical statements. Now we are ready for a precise
definition of a limit. [Since it is an almost universal custom, in the
definition of a limit we will use the Greek letters 6 (delta) and e (epsilon).]

Definition of a Limit

Let f(x) be defined for all x in an interval about x = a, but not
necessarily at x = a. If there is a number L such that to each positive
number € there corresponds a positive number 8 such that

| f)—L | <e provided 0 < | x —a | < §,
we say that L is the limit of f(x) as x approaches a, and write
&i—ﬁ‘ f(x) = L.
To see how to apply this definition,
Go to 106.

Answers: (103) 2, -3
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106

The formal definition of a limit in frame 105 provides a clear basis for
settling a dispute as to whether the limit exists and is L. Suppose we
assert thatlim f(x) = L, and an opponent disagrees. As a first step, we tell

her to pick a positive number ¢, assmall as she pleases, say 0.001, or if she
wants to be difficult, 107'%. Our task is to find some other number 8, such
that for all x in the interval 0 < | x—a | < §, the difference between f(x)
and L is smaller than e. If we can always do this, we win the argument—
the limit exists and is L. These steps are illustrated for a particular
function in the drawings below.

f(x) f(x)

2¢

|

|

|

|

|

|

|

|

1
a

X

Our opponent has chal- Here is one choice of 4.
lenged us to find a § to Obviously, for all values
fit this e. of x in the interval
shown, f(x) will satisfy
| fx)-L | <e.

It may be that our opponent can find an e such that we can never find a
8, no matter how small, that satisfies our requirement. In this case, she
wins and f(x) does not have the limit L. (In frame 114 we will come to an
example of a function which does not have a limit.)

Go to 107.

107

In the examples we have studied so far, the function has been ex-
pressed by a single equation. However, this is not necessarily the case.

(continued)
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Here is an example to show this.

flx) =1 for x # 2,
flx) =3 for x = 2.

(The symbol # means “not equal.”)
A suggestive sketch of this peculiar function is shown. You should be
able to convince yourself that lirgl f(x) = 1, whereas f(2) = 3.

f(z)

3+ ]

2._
| e e
1 ! 1 1 1 1 Il
-10" 1 2 3 4 5 ¢

X

If you would like further explanation of this, go to 108.

Otherwise, go to 109.

108

For every value of x except x = 2, the value of f(x) = 1. Consequently,
f(x)—1 = 0 for all x except x = 2. Since 0 is less than the smallest positive
number e that your opponent could select, it follows from the definition of
a limit that Li‘_nzlf(x) = 1, even though £(2) = 3.

Go to 109.

109

Here is another function which has a well-defined limit at a point but
which can’t be evaluated at that point: f(x) = (1 + x)**. The value of f(x) at
x = 0 is quite puzzling. However, it is possible to find lir{)x (1 + x)*=,

Most scientific calculators have the function y*. If you have such a
calculator, determine the values in the following table
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x 1+ x)=

1

0.1

0.01
0.001
0.0001
0.00001

The limit of (1 + x)'* as x — 0 will play an important role in our study
of logarithms. It is given a special symbol, e. Like 7, e is an unending and
unrepeating decimal; it is irrational. The value of e is 2.7182818 . . .. If
you tried evaluating e with a calculator, the last entry in the table should
give correct values for the first four digits after the decimal point.

Go to 110.

110

The actual procedure for finding a limit varies from problem to prob-
lem. There are a number of theorems for finding the limits of simple
functions in Appendix A2, which you should read if you are interested.
The result mentioned earlier,

lim $18-9_
&0 6

is proven in Appendix A3.

|
= y A _{_ 0 I % pa N }25 8 (radians)

(continued)
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You can see that this result is reasonable by graphing the function

__su; g as shown above. If you have a calculator, explore for yourself val-

ues of su; o
at § = 0, most calculators will indicate an error. This is as it should be,
since the function is not defined at § = 0. Nevertheless, its limit is well

defined and has the value 1.

as § approaches zero. If you try to evaluate the function

Go to 111.

111

So far in most of our discussion of limits we have been careful to
exclude the actual value of f(x) at the point of interest, a. In fact, f(a) does
not even need to be defined for the limit to exist (as in the last frame).
However, frequently f(a) is defined. If this is so, and if in addition

lim f(x) = fla),
then the function is said to be continuous at a. To summarize, fill in the

blanks:
A function fis continuous at x = a if

1. fla)is
2. limf(x) =

Check your answers in frame 112.

112
Here are the correct answers: A function f is continuous at x = a if

1. f(a) is defined.
2. limf(x) = f(a).

A more picturesque description of a continuous function is that it is a
function you can graph without lifting your pencil from the paper in the
region of interest.

Try to determine whether each of the following functions is continuous
at the point indicated.
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L ofw =523
Atx = 3, flx) is [continuous | discontinuous]
1, x=0,
2. fx)= {
0, x < 0.
Atx =1, f(x) is [continuous | discontinuous]
3. f®=lxl
Atx =0, fx) is [continuous | discontinuous]
4 fly =22
Atx =0, flx) is [continuous | discontinuous]

If you made any mistakes, or want more explanation, go to 113.
Otherwise, skip on to 114.

113

Here are the explanations of the problems in frame 112.

_ _x2+3_12 b .
1. Atx=3,fx)= -2 0" This is an undefined expression and,

therefore, the function is not continuous at x = 3.
2. Here is a plot of the function given.

f(x)

2+

(continued)
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This function satisfies both conditions for continuity at x = 1, and is
thus continuous there. (It is, however, discontinuous at x = 0.)
3. Hereisaplotof f(x) = | x |

lx|

x

This function is continuous at x = 0 since it satisfies all the formal
requirements.

sin x

4. As discussed in frame 110, is not defined at x = 0. (It is,

however, continuous for all other values of x.)

Go to 114.
114

Before leaving the subject of limits, it is worth looking at some ex-
amples of functions which somewhere have no limit. One such function is
that described in problem 2 of the last frame. The graph of the function is
shown in the figure. We can show that this function has no limit atx = 0
by following the procedure described in the definition of a limit.

f(x)

LI|LIII
1

For purposes of illustration, suppose we guess that linolf(x) = 1. Next,

our opponent chooses a value for ¢, say Ya. Now, for| x—0 | < 8, where §is
any positive number,

Answers: (112) (1) discontinuous, (2) continuous, (3) continuous,
(4) discontinuous
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|[1-1]=0 ifx > 0,
| f)-1 |=
l[o-1]l=1 ifx<0O.
Therefore, for all negative values of x in the interval,| fix)-1 | =1,

which is greater than € = Y. Thus 1 is not the limit. You should be able to
convince yourself that there is no number L which satisfies the criterion
since f(x) changes by 1 when x goes from negative to positive values.

Go to 115.

115

Here is another example of a function which has no limit at a point.
From the graph it is obvious that cot 6 has no limit as § — 0. Instead of
clustering more and more closely to any number, L, the value of the
function gets increasingly larger as § — 0 in the direction shown by A,
and increasingly more negative as § — 0 in the direction shown by B.

coté

This concludes our study of the limit of a function for the present. If you
would like some more practice with limits, see review problems 21
through 28 on page 246.

Now we are ready to go on to the next section.

Go to 116.
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Velocity

116

We have been getting a little abstract, so before we go on to differential
calculus, let’s talk about something down to earth: motion. As a matter of
fact, Leibniz and Newton invented calculus because they were concerned
with problems of motion, so it is a good place to start. Besides, you
already know quite a bit about motion.

Go to 117.

117

Here is a warm-up problem. In this chapter the motion is always along
a straight line.

A train travels away at a velocity v mph (miles per hour). At¢ = 0, it is
distance S, from us. (The subscript on Sj is to avoid confusion. S is a
particular distance and is a constant; S is a variable.) Write the equation
for the distance the train is from us S in terms of time ¢. (Take the unit of ¢
to be hours.)

Go to 118 for the answer to this.

118

If you wrote S = S, + uvt, you are correct. Go on to frame 119.

If your answer was not equivalent to the above, you should convince
yourself that this answer is correct. Note that it yields S = Sy when¢ =0,
asrequired. The equation is that of a straight line, and it might be a good
idea to review the section on linear functions, frames 23-39, before
continuing. When you are satisfied with this result,

Go to 119.
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119

S(miles)

o2 Y 8
L t(hours)

Here is a plot of the positions at different times of a train going in a
straight line. Obviously, this represents a linear equation. Write the
equation for the position of this train (in miles) in terms of time (in

hours).

S:

Find the velocity of the train from your equation.

v =

Go to 120 for the correct answers.

120
Here are the answers to the questions in frame 119.

S = —60¢ + 300 miles,
v = —60 mph.

The velocity is negative because S decreases with increasing time. (Note
that the velocity along a straight line is positive or negative depending
on the direction of motion. The speed, which is the magnitude of the
velocity, is always positive.) If you would like further discussion, review

frames 33 and 34.
Go to 121.
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121

Here is another plot of position of a train traveling in a straight line.

S

P I

/

~

The property of the line which represents the velocity of the train is the
of the line.

Go to 122 for the answer.

122

The property of the line which represents the velocity of the train is the
slope of the line.

If you wrote this, go right on to 123.

If you wrote anything else, or nothing at all, then you may have
forgotten what we reviewed back in frames 23-39. You should go over
that section once again (particularly frames 33 and 34) and think about
this problem before going on. At least convince yourself that the slope
really represents the velocity.

Go to 123.

123

On the next page are plots of the positions vs. time of six objects
moving along straight lines. Which plot corresponds to the object that
Has the greatest velocity forward? [a | blcld|elf]
Is moving backward most rapidly? [a|blcld|elf]
Is at rest? lalblcldlelf]
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If all right, go to 125.
If any wrong, go to 124.

124

The velocity of the object is given by the slope of the plot of its distance
against time. Don’t confuse the slope of a line with its location.

S S
d
/ / / c
b
a
71 I/ 7 t T ¢
All the above lines have the same All these lines have differ-
slope. ent slopes.

A positive slope means that distance is increasing with time, which
corresponds to a positive velocity. Likewise, a negative slope means that
distance is decreasing in time, which means the velocity is negative. If
you need to review the idea of slope, look at frames 25-27 before continu-
ing.

Which line in the figure above on the right has

Negative slope? lalblecldl
Greatest positive slope? [a | b | ¢ | d]

Go to 125.
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125

So far, the velocities we have considered have all been constant in
time. But what if the velocity changes?

S-axis

t-axis

Here is a plot of the position of a car which is traveling with varying
velocity along a straight line. In order to describe this motion, we in-
troduce the average velocity ¥ (read as “v bar”), which is the ratio of the
net distance traveled to the time taken. For example, between the times
¢, and ¢, the car went a net distance Sz — Sy, s0 (S3 — 8,)/(t; — t;) was its
during the time.

Go to 126.

126
The answer to frame 125 is
(S; — S)/(t, — t,) was its average velocity during the time.
(The single word “velocity” is not a correct answer.)

Go to 127.

127

In addition to defining the average velocity 0 algebraically,

S; -8,

= -

0=

we can interpret o graphically. If we draw a straight line between the
points (¢;, S,) and (¢5, S5), then the average velocity is simply the slope of
that line.

Answers: (123) d, b, e
(124) d, a
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t-axis

Go to 128.

128
During which interval was the average velocity

Closest to 0? 112138 S
Largest forward? [1 2] 3]
Largest backward? [1 | 2| 3]

If right, go to 130.
If wrong, go to 129.

129

Since you missed the last problem, we’ll analyze it in detail.

Here are straight lines drawn through the points A, B, C. Linel has a
very small slope and corresponds to almost 0 velocity. Line IT has positive
slope, and line III has negative slope, corresponding to positive and
negative average velocities, respectively.

Go to 130.
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130

We now extend our idea of velocity in a very important manner:
instead of asking “what is the average velocity between time ¢; and ¢,?”
let us ask “what is the velocity at time ¢,?” The velocity at a particular
time is called the instantaneous velocity. This is a new term, and we
will give it a precise definition shortly even though it may already be
somewhat familiar to you.

Go to 131.

131

t

We can give a graphical meaning to the idea of instantaneous velocity.
The average velocity is the slope of a straight line joining two points on
the curve, (¢4, S;) and (¢5, S,). To find the instantaneous velocity, we want
t, to be very close to ¢;. As we let point B on the curve approach point A
(i.e., as we consider intervals of time, starting at ¢, which become shorter
and shorter), the slope of the line joining A and B approaches the slope of
the line which is 1abeled I. The instantaneous velocity is then the slope of
line /. In a sense, then, the straight line [ has the same slope as the curve
at the point A. Line [ is called a tangent to the curve.

Go to 132.

132

Here is where the idea of a limit becomes very important. If we draw a
straight line through the given point A on the curve and some other point
on the curve B, and then let B get closer and closer to A, the slope of the
straight line approaches a unique value and can be identified with the
slope of the curve at A. What we must do is consider the limit of the slope
of the line through A and B as B — A.

Now, go to 133.

Answers: (128) 1, 2, 3
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133

We will now give a precise meaning to the intuitive idea of in-
stantaneous velocity as the slope of a curve at a point. We start by
considering the average velocity:

b = (S, —8S,)/(ty—t;) = the slope of the line connecting points 1 and 2.

S | N (t2,S2)
S2=8)

t L t-axis

As t, — t;, the average velocity approaches the instantaneous velocity,
that is, 0 —» v as ¢, — ¢;, or

. S, -8,
v= lim :
ety tz - tl

Go to 134.

134

Since the ideas presented in the last few frames are very important,
let’s summarize them.
If a point moves from S, to S, during the time ¢, to f;, then

(Sg — Sty - ty)

is the , D.

If we consider the limit of the average velocity as the averaging time
goes to zero, the result is called the
v

Now let’s try to present these ideas in a neater form. If you can, write a
formal definition of v in the blank space.

v =

Go to frame 135 for the answers.
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135

The correct answers to frame 134 are the following:
If a point moves from S; to S, during the time ¢, to ¢, then

Sy — Sty - ty)

is the average velocity 0.
If we consider the limit of the average velocity as the averaging time
goes to zero, the result is called the instantaneous velocity v.

ot 2=t

If you wrote this, congratulations! Go on to 136.
If you wrote something different, go back to frame 133 and work your
way to this frame once more.

Then go on to 136.

136

The Greek capital A (“delta”) is often used to indicate the change in a
variable. Thus, to make the notation more succinct, we can write AS =
S,—S;,and At = ¢, —t,. (AS is a single symbol read as “delta S”; it does
not mean A X S.) Although this notation may be new, it is worth the
effort to get used to it since it saves lots of writing.

S

(S2, t2)

AS

(81, 4)
At
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With this notation, our definition of instantaneous velocity is

v =

Go to 137 to find the correct answer.

137

If you wrote

v=lim 59
a0 AL’

you are really catching on. Go ahead to frame 138.
If you missed this, study frames 134-136 before going to 138.

138

Now we are going to calculate an instantaneous velocity by analyzing
an example step by step. Later on we will find shortcuts for doing this.

Suppose that we are given the following expression relating position
and time:

S = f() = kt? (k is a constant).

The goal is to find AS = At + At) — f(2), for any A¢, and then to evaluate
the limit AS/At as At — 0.
Here are the steps
AS=f(t + AD) - f(t) =k(t + AD2 — k2
=k[t2 + 2t At + (AD)2] - k2
=k[2t At + (AD)2],
AS_RI2tAt+ (AD?%)
At i T =2kt + k At,

v=1lim35< tim 2kt + & Ay =20t
a0At  Ams0

A simpler problem for you to try is in the next frame.

Go to 139.
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139

Suppose we are given that S = f(¢) = vt + So. The problem isto find the
instantaneous velocity from our definition.
In time At the point moves distance AS.

AS=
v=lim .
am0At
Write in the answers and go to 140.
140
If you wrote
AS = Vg At
and
v=lmag=vo

you are correct and can skip on to frame 142.
If you wrote something different, study the detailed explanation in
frame 141.

141
Here is the correct procedure. Since S = f(¢) = vot + Sy,

AS=f(t + At) - f®)
=y (t + At) + So — (vot + Sp)
=Ug At,

lmA_S=lm Vo At
A0 AT aoso At

=lim vy = v,.
At—0 ® W

The instantaneous velocity and the average velocity are the same in
this case, since the velocity is a constant, v,.

Go to frame 142.
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142

Here is a problem for you to work out. Suppose the position of an object
is given by

S=f(®) =kt2+ It + S,

where k, [, and S, are constants. Find v.

To check your answer, go to 143.
143

The answer is
v=2kt+ 1l
If you obtained this result, go on to frame 146. Otherwise,

Go to 144.
144

Here is the solution to the problem in frame 142.

fO=kt*+ It + 8,
fG@+At=k(t+ AD%+ Ut + AD + S,
=k[t + 2t At + (A% + Ut + Af) + S,,
AS=f(t + At) - f(t) = k[2t At + (At)?%] + I A,

2
= limA_§=lim{klztAH(AAtt) ]+lAt}

a0 At A0
= }i‘mo[k(Zt + Af) + 1] = 2kt + L.

(continued)
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Now try this problem:

If S = A#%, where A is a constant, find v.

Answer:

To check your solution, go to 145.

145

Here is the answer: v = 3At2. Go right on to frame 146 unless you
would like to see the solution, in which case continue here.
S=A8,
AS=A(t + At} - AP
=A[£? + 3t2 At + 3HAD% + (AD3] - AL
=3At% At + 3AHAD? + A(ALP,

_ .. AS
v=lim-—=

: ) .
lim7 = lim[3A¢% + 3At At + A(A0)] = 3AL%

Go to frame 146.

Derivatives

146

In this section we will generalize our results on velocity. This will lead
us to the idea of the derivative of a function, which is at the very heart of
differential calculus.

Go to 147.

147

Fill in the blanks below.
When we write S = f(¢), we are stating that position depends on time.
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Here position is the dependent variable and time is the
variable.

The velocity is the rate of change of position with respect to time. By
this we mean that velocity is (give the formal definition again):

v =

Go to frame 148 for the correct answers.

148
In the last frame you should have written
. . . time is the independent variable,

and

v= limA—s
a0 At

In any case, go on to 149.

149

Let us consider any continuous function defined by, say, y = f(x). Now y
is our dependent variable, and x is our independent variable. If we ask
“At what rate does y change as x changes?”, we can find the answer by
taking the following limit:

Rate of change of y with respect to x =lim Ay

ax—0 Ax°
Go to 150.
150
You can give a geometrical meaning to gimo %—3;, where y = f(x). To do
80, fill in the blanks. Geometrically, }imo %—i can be found by drawing a

)

(continued)

straight line through the point (x, y) and the point (

td
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as shown. The slope of that line is given by %—i, and }imo %% is the

of the tangent to the curve at (x, y).

Go to 151.

151
The correct insertions for frame 150 are
(x + Ax,y + Ay),

}im% is the slope of the tangent curve at (x, y). For brevity, the slope of

the tangent to a curve is usually called the slope of the curve.
(If you would like to see a discussion of this, review frame 131 before
continuing.)

Go to 152.

152
. Ay,
Another way of writing A S
Y2=N or flxo) — flxy)
Xy — Xy Xo— %y

If the notation used here still seems unfamiliar, review frame 136
before proceeding.

Go to 153.
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153

Let’s review just once more.
If we want to know how y changes as x changes, we find out by
calculating the following limit:

Fill in the blank and go on to 154.

154

The correct answer to frame 153 is

lim ) or lim 22221
Ax-0 AX oz Xg — Xy
If you were correct go on to 155.
If you missed this, go back to 149.
155
Because the quantity lim0 2—‘; is so useful, we give it a special name and
a special symbol.
lim Ay is called the derivative of y with respect to x, and it is often
Ar0 Ax dy

written with the symbol &

dy

Ay
dr ~ a0 Ax’

where Ay = y(x + Ax) — y(x).

Once again: 3_1 is the of with respect to

Go to 156 for the correct answer.
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156

The correct answer is

Z—i is the derivative of y with respect to x.
This symbol is read as “dee y by dee x.” The derivative is frequently

written in another form:

d
2.
(The symbol y' is read as “y prime.”) y' and % mean the same thing:
V=B gim &Y
Y T 11;110 Ax

(Another symbol sometimes used for the derivative operator is D. Thus
Dy = y'. However, we will not use the “D” symbol.)

Having two separate symbols for the derivative may look confusing at
first, but they should both quickly become familiar. Each has its advan-
tages. The symbol Z—i leaves no doubt that the independent variable is x,
whereas y' might be ambiguous—y could be a function of some other
variable, z. [To avoid such a confusion, the “prime” form is sometimes

written as y'(x).] On the other hand, the symbol % can be cumbersome to
i—i the derivative looks like the simple
ratio of two quantities, dy and dx, which it is not.

We can apply the idea of a derivative to the motion of velocity which we
discussed earlier. Velocity is the rate of change of position with respect to
time, so velocity is the derivative of position with respect to time.

write. More seriously, in the form

Go to 157.

157

Let’s state the definition of a derivative using different variables.
Suppose z is some independent variable, and g depends on 2. Then the
derivative of ¢ with respect to z is

dg _
dz

(Give formal definition.)

For the right answer, go to 158.
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158

Your answer should have been
99 _ im A9
dz~ a0 Az

If so, go to 159.
If not, go back to frame 155 and try again.

159

The symbol (%{ can be thought of as a derivative operator i, operating

on the function f.
If f(x) = x® + 3, then the derivative can be written in any of the
following forms:

df da®+3) d ,
- dx &r T

Similarly,
d@*sin ) _d o .
a8 —de(() sin 0).
(Here, 6 is merely another variable.)
Thus ;_x ( ) means “differentiate with respect to x” whatever func-

tion f(x) happens to be in the parentheses. In complete detail the symbol
means that one should obtain an expression for

Af = flx + Ax) - f(x),

and then use it to evaluate

BN
It_llm

a0 Ax’

However, as we shall see, one hardly ever goes through this formal
limiting procedure to find a derivative. There are lots of shortcuts.

Go to 160.
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Graphs of Functions and Their Derivatives

160

We have just learned the formal definition of a derivative. Graphical-
ly, the derivative of a function f(x) at some value of x is equivalent to the
slope of a straight line which is tangent to the graph of the function at
that point. Our chief concern in the rest of this chapter will be to find
methods for evaluating derivatives of different functions. However, in
doing this it is very helpful to have some sort of intuitive idea of how the
derivative behaves, and we can obtain this by looking at the graph of the
function. If the graph has a steep positive slope, the derivative is large
and positive. If the graph has a slight slope downward, the derivative is
small and negative. In this section we will get some practice putting to
use such qualitative ideas as these, and in the following sections we will
learn how to obtain derivatives precisely.

Go to 161.

161

Here is a plot of the simple function y = x. At the top of the next page we
have plotted y' = % Since the slope of y is positive and constant, y' isa
positive constant.

The graph indicates that c%c(x) = 1. Can you prove this?

Y
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o
—
N
w

Go to 162.

162
To prove that ‘% (x) = 1, let y(x) = x. Then
Ay =y(x + Ax) - y(x) = x + Ax—x = Ax.
Hence,
Ay Ax

&x = bm Ry S lm =1

Here is a plot of y = | x . (If you have forgotten the definition of | x |,
see frame 20.) On the coordinates below, sketch y'.

37

3

2

For the correct answer, go to 163.
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163

Here are sketchesof y =| x |and y'. If you drew this correctly, go on to
164. If you made a mistake or want further explanation, continue here.

Yy Yy
3 3
2 2
1 1
=3 =2 -1 0 3 ° =3 -2 -10 1 2 3 °
-1 =1
=2, -2

As you can see from the graph, y =] x | = x for x > 0. So for x > 0 the
problem is identical to that in frame 161, and y' = 1. However, forx <0,
the slope of| x |is negative and is easily seen tobe —1. Atx = 0, the slope
is undefined, for it has the value +1 if we approach 0 along the positive
x-axis and has the value -1 if we approach 0 along the negative x-axis.

Therefore, (%c (| x |) is discontinuous at x = 0. (The function x is con-

tinuous at this point, but the break in its slope at x = 0 causes a
discontinuity in the derivative.)

Go to 164.
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164

Here is the graph of a function y = f(x). Sketch its derivative in the
space provided below. (The sketch does not need to be exact—just show
the general features of y'.)

Yy
2
1 \
o o
L
=3 = -1 0 1 2 3
| | | | | |
| [ 1 [ | i
5
2
1
=3 ) = 0 1 2 3
=)
-2

See 165 for the correct answer.
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165

Here is the function and its derivative. If your sketch of y' is similar to
that shown, go to 166. Otherwise, read on.

y
2iC
B D
1
// Y
A E
,_,/ I~ .
3 ) =i 0 1 2 3
| | | | | |
T i T
5
2
\
//
= = =} 0 1 2 _1—43
T
=
N\
-2

To see that the plot of y' is reasonable note that for x < 0, y increases
with x so that y' is positive. The slope is greatest near point B, but it must
abruptly decrease beyond B since it vanishes at C (x = 0). At D, y is
decreasing rapidly, soy' is negative. At the extremes, A and E, the slope
is small and y' is close to zero.

Go to 166.
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166

Let’s look at the behavior of y' graphically for one more function. Here
the plot of y and x is a semicircle. In the space below, make a rough sketch
of y' for the interval illustrated.

y

AT TN

Go to 167 for the correct answer.
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167

Here are the plots of y and y'. Read on if you would like further
discussion of this. Otherwise, go to 168.

Y

AT TN

™

The slope of the semicircle does not behave nicely at the extreme
values of x, so let’s start by looking at x = 0. If we draw a line tangent to
the curve at x = 0, it will be parallel to the x-axis, so the curve has 0 slope.
Thus, y' = 0 atx = 0. For x > 0, a line tangent to the curve has negative
slope, so y' < 0. As x approaches 1 the tangent becomes increasingly
steep, and y' becomes increasingly negative. In fact, asx— 1, y' - — =,

From this discussion it should be easy to find y' for x < 0.

Go to 168.
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168

If you understand all the examples in this section, skip on to the next
section. However, if you would like a little more practice, try sketching
the derivatives for each function shown. The correct sketches are given
in frame 169 without any discussion.

y y
1 1 ,‘/ﬂ
V.
= =1 1.0 * =Tl R x
4
1 A1
1
y
¥ 2
1 1
=2 [=1 [0 8 =2 =1 |0 *
1 1 1
(a) ®)
y
Yy
1 1
;\ /l
N AT A
ANEAENYL * =2 -1 [ 72 3
N ) AN l
11 T
.
y' 1
1 1
= = [ x = = ) x
) il -

(c) (d)

For the correct sketches, go to 169.
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169

Here are the solutions to the problems in frame 168.

y Yy
——
1 1 -
)
= -1 1,0 * =2 [-1 [0 *
4
1 A
et
)
¥ f
2
1 1
bt =
i g x SR e x
1 1
© ()
y
Yy
1 1
< /
\ A1 .
N[-2 [- 0 3 =2 |- o SN~=1.4 *
N 7
) -
5
y' 2 2
L1 1
- '\\ N A
=2/T<1 |0 N 3 =2 [-INJ 0] *
Y N i
1

(c) (d)

You should be able to convince yourself that the curves for y' have the
general features we expect by comparing y' with the slope of a tangent to
the graph of y = f(x) at a few particular values of x.

Go to 170.
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Differentiation

170

We have accomplished a great deal so far in this chapter. In fact, all the
really important new ideas involved in differential calculus have been
introduced—limits, slopes of curves, and derivatives—and you are
equipped in principle to solve a wide variety of problems. However, using
the fundamental definition to calculate the derivative in each problem as
it comes along would be very time-consuming. It would also be a great
waste of time since there are numerous rules and tricks for differentiat-
ing apparently complicated functions in a few short steps. You will learn
the most important of these rules in the following sections. You will also
learn how to differentiate a few functions which occur so often that it is
useful to know and remember their derivatives. These include a few of
the trigonometric functions, logarithms, and exponentials. The remain-
ing sections cover some special topics, as well as applications of differen-
tial calculus to some problems. By the end of this chapter you should be
able to use differential calculus for many applications. Well, let’s get

going!

On to 171.

171
Can you find the derivative of the following simple function?

y=a (a is a constant).

y'=[1]x|al 0] none of these]

If right, go to 173.
If wrong, go to 172.

172

, e @AY s iy N7
To find y', we go back to the definition et hr_.n0 Ax

Ify =aq,

Ay flxtAx)-flx) a-a_
Ax Ax T Ax

0.

(Remember that the meaning of f(x + Ax) is f evaluated at x + Ax.)

(continued)
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lim A—y=lim0=0.
Ax—0 Ax  ax0

Since y' = 0, the plot of y in terms of x has 0 slope. (Figure 4 in frame 32
shows this graphically.)

Go to 173.

173

You have just seen that the derivative of a constant is 0.
Now, try to find the derivative of this function:

y =ax (a = constant).

%:ﬂ | x| @l 0| ax | none of thesel

If right, skip to 175.
If wrong, go to 174.

174
Here is the correct procedure:
yx) = ax,
ylx + Ax) — y(x) = alx + Ax) — ax = (ax + a Ax) — ax = a Ax.
Therefore

ay_y: Ay _ o alx_
dx hr-noAx Ali—rﬂ) Ax &

Now try to find the derivative of the function f = —x.
ff=0110lal-1]|-x]

If correct, go to 175. If wrong, note that this problem is just a special
case of 173. Try again and then

Go to 175.

Answer: (171) 0
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175

Now we are going to find the derivative of a quadratic function.
Suppose

y = flx) = x2,
What is y'?

You should be able to work this out from the definition of the de-
rivative. Choose the correct answer:

y=[1x|0]x2%][2x]

If right, go to 177.
Otherwise, go to 176.

176

Let us recall the definition of the derivative

, _Gdy_ .. ylx+ Ax) —y(x)
y _dx_‘l}g}) Ax ’

In this case, y(x + Ax) = (x + Ax)%2 = x2 + 2x Ax + (Ax)?, so

_ 2 2)_ .2
limy(x + Ax) - yx) _ lim [x2+2xAx + (Ax)%]-x

Ax—0 Ax Ax—0 Ax
— lim 2XAx + (Ax)?
Ax—0 Ax

= lim (2x + Ax) = 2x,
Ax—0

Go to 177.
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177

We have found the result that c%c (x2) = 2x. Toillustrate this, a graph of

y = x2 ig drawn in the figure. Since the slope of the curve at a point is
simply the derivative at that point, each of the straight lines tangent to
the curve has a slope equal to the derivative evaluated at the point of
tangency.

y
it
2._
s
1_
(c)
Siope = ~2\ %[ smg;; 1
L (R
-1% -1 =% ON % 1 1%
(a)
Slope = 0

The tangent through the origin has a slope of (2)(0) = 0. Line () passes
through the point x = 2, and has slope (2)(¥2) = 1. Line (c) passes through
the point x = -1, and has slope (2)(-1) = —-2.

Go to 178.
178

Here is a problem which summarizes the results we have had so far in
this section (with a tiny bit of new material).
Iff=3x%2+ 7x + 2,

Find f'.

Answer: f' =

See frame 179 for the correct answer.

Answers: (173)a  (174)-1 (175) 2x
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179

If f=3x2+ 7x + 2, then f' = 6x + 7.
Congratulations if you got this answer. Go on to 180. Otherwise, read
below.

After you have finished this chapter, you will know several shortcuts
for evaluating this derivative. However, right now we will use the basic
definition:

e #lgAf
Ax’
f(x)=3x2% + Tx + 2,
fx + Ax)=3[x2 + 2xAx + (Ax)?] + T(x + Ax) + 2,
Af=flx + Ax) —f(x) = 6x Ax + 3 Ax? + 7 Ax,

80
2
-ﬂ=um(&Ax+3Ax+7Aﬂ=1mu&+3Ax+ﬂ
Ax—0 Ax Ax—0
6 7.
Go to 180.
180

Now that we have found the derivatives of x and x2, our next step is to
find the derivative of x*, where n is any number. We will state the rule
here, but you can look in Appendix A4 if you would like to see how it is
derived.

The result is

dxn— n—-1
dx =nx .

This important result holds for all values of n: positive, negative, inte-
gral, fractional, irrational, etc. Note that our previous result, ;x (x?) =
2z, is the particular case of this when n = 2.

[Also, 1% (x) = 1 is the particular case when n = 1.]

Go to 181.
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181

Now for a few applications.

Find dy for each of the following functions.

dx
y = a8, (di—‘z=[3x3l3x2|2x3|x2]
.7 A _ - 6 = -8 =7
y=x" [7x78 | Tx " | =7x® | —6x7)
_1lodr_ 52, 2
y_xzy dx_[—lex’—x"]
If all these were correct, go to 183.
If you made any errors, go to 182.
182

The solutions to these problems depend directly on the rule in frame
180. Here are the details.

We use our general rule: ‘%C(x") = nx"!.

y = x% in this case n = 3, so

(%C(xa) = 3x>! = 3x2.

y = x"; here n = -7, so
‘%c(x‘"’) =_Tx "1 = _Tx8
y = 1/x? = x~% here n = -2, s0
a(ly_ o, 21_ _g.-3_=2
& ()= =t =
Now try these problems:
=1 dy _ 1411, 1
y=5 - [1+x|—x|—x7|2]
I dy _ (.4 —a =l 2 -2
y=ga3 dx_[x | —38x |4x | +x72]

If right, go on to 183.
If wrong, go back to 180 and continue from there.
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183
Here is another application.

If y = V2, find %

The answer is. [x72 | %x‘” Za %x | none of these].

If right, go to 185.
If wrong, go to 184.

184

The rule % = nx"! is true for any value of n.
In this case, n = %
a vz _laen_1 2
o (x'%) = o* =r
Try this problem:
a  om 32 232 13 53
5 @) =[x |3x |3x | x°3]

Go to 185.

Some Rules for Differentiation

185

In this section we are going to learn a number of shortcut rules for
differentiation without having to go all the way back to the definition of
the derivative each time. Some of these rules are derived here, while
others are derived in Appendix A.

For the rest of this section, we will let u(x) and v(x) stand for any two
variables that depend on x.

Go to 186.
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186

Our first rule will let us evaluate the derivative of the sum of u and v,
in terms of their derivatives. We will derive the rule here. Let

y = ulx) + v(x).

Then
S o (s 4 B9) o ol o 63) o 106) — o] =
dx Ax—0 Ax
o d g 1
= IA‘,T.o [u(x + Ax) — u(x)} N2 {}Eo [v(x + Ax) — v(x)] s
_du dv
& @
Hence

d _du  dv
d_x(u+v)—d_x+(Tx'

If you would like a rigorous justification of the manipulation of the
limits in the above proof, see Appendix A2.

Go to 187.

187

Now let’s put the above rule to use by computing the derivative of the
following function (you will also have to use some results from the last
section):

y=x* + 82°
ay _
dx

For the correct answer, go to frame 188.

Answers: (181) 3x2, —7x8, —2/x® (182) -1/x2, x4
1 e 2 3
(183) ok (184) §x
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188

The correct answer to the question in frame 187 is

d . 3y = 443 2

dx(x + 8x%) = 4x° + 24x°.
If you got this answer, go to frame 189. Otherwise, continue here to find
your mistake.

Our problem is to find the derivative of the sum of two functions. To
make use of the rule in frame 186 in the notation used there, suppose we
let u = x%, v = 82°.

Then

a — 4.4 _ 4 4. dos
dx(U+v)—dx(x +813)—djx(x)+d—x(8x).
You should be able to evaluate these two derivatives from the result of

the last section:

%w) = 4x°, G%(Sxf*) = 24x2.

Hence, ‘%c(x‘ + 8x%) = 4x® + 24x2

Go to 189.

189

Now that we can differentiate the sum of two variables, our next
task is to learn to differentiate the product, for instance, u(x) X v(x). We
d . du dv
want to express Zx (uv) in terms of o and e The result, known as the
product rule, will be stated here. Look in Appendix A6 if you want to see
how it is derived.

Product rule

Go to 190.
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190
Here is an example in which the product rule is used. Suppose
y =& + D + 17x).

The problem is to find (& If welet u=uo"+ 7, v=1ux%+ 17z,

dx
then y = wv.
dy_d_ v, du
d—x—dx(uu)—udx+vdx.
Since 2 = 5x* and dv = 3x2 + 17, our result is
dx dx ’

% =% + DBx2 + 17) + (® + 17x)(5x*).

Note that it is usually considered good practice to simplify (collect
together terms in like powers of x) expressions such as this. However, to
save time in this chapter, you need not do so.

By using the product rule, we can derive in another way a result we

have already found: d%(x"’) = 2x. If welet u = xand v = x, then the product
rule tells us that

d, o _ dx  dx_
d—x(x)—xdx+xdx—2x.

Go to 191.

191

Use the product rule to find the derivative dix [(8x + T)(4x2 + 6x)].

Answer:

Go to 192 for the solution.
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192
The answer is
(3x + T)8x + 6) + (4x2 + 6x)(3).

If you obtained this or an equivalent result, go on to 194. Otherwise,
read below.

The problem is to differentiate the product of 3x + 7 and 4x® + 6x.
Suppose we let u = 3x + 7and v = 4x? + 6x. Then u' = 3,v' = 8x + 6.
Hence

d%(uv) = w' + vu' = (3x + )(8x + 6) + (4x2 + 6x)(3).

Try this problem:
What is 2 ((2x + 3

Answer:

Go to 193 for the correct solution.

193
L (20 + B = @x + 6L + WD)

The method for obtaining this islike that shown in frame 192. You can
use the rule in frame 180 for differentiating x” in order to find (%C(aﬁ) =
Bt

Go to 194.
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194

In frame 189 we learned the product rule: (uv)' = uv' + vu'. Some-
times one needs to differentiate the quotient of two functions, u(x)/v(x).
Here is the rule. It will be proven later in this section, in frame 206.

Quotient rule

d (v _ v(du/dx) — u(dv/dx) _ vu' — uv'
d.x(v) - v2 v2 o

Go to 195.

195

Solve the following problem:

I 2

dx\ x

d(l+x)=

To see the correct answer, go to 196.

196

The answer to the problem in 195 is

A R R

% x%

If right, go to 198.
If wrong, you should go to 197 for help.
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197
du dv
_ = 42 au _ _
Letu=1+x,v x.Thendx 1'dx 2x.
i(£)=v(du/dx)—u(dv/dx)
dx\ v v2 ’
diu)_x*-1+x2x)_1 2,
) - =5 Say
2
T TRy
Go to 198.
198

In this frame we are going to learn a useful rule for finding the
derivative of a “function of a function.” Suppose f is a variable that
depends on u, and u in turn depends on x. Then f also depends on x. The
following rule is proved in Appendix A7.

Chain rule

df _ df du

dx dudx

This formula is called the chain rule because it links together de-
rivatives with related variables. It is one of the most frequently used
rules in differential calculus.

Here is an example: Suppose we want to differentiate f(x) = (x + x
This is a complicated function. It looks much simpler if we let u = x + x2,
in which case f(x) = u?

df _ df du du du

_dfdu _d o du_
T e S

2)2.

We now substitute the value u = x + x2, and du =1 + 2x, to obtain

dx
df 2(x + xH(1 + 2x).

(You can check that the chain rule gives the right answer in this case
by multiplying out the expression for f, and then differentiating it. You
will find that the answer is equivalent to‘%{ found above.)

(continued)
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Caution: The chain rule would be a simple identity if (%]: and ‘(ii—b; could
be treated as ratios of independent quantities df, du, dx. However, this is
not the case; one cannot cancel du’s in the numerator and denominator.
(Nevertheless, this fiction makes a very handy way to remember the
chain rule!)

Go to 199.

199

Here are a few more examples of the use of the chain rule.
1. Find %(\/1 +t2).

Suppose we let w = VI + ¢2,and u = 1 + t2 so that w = Vu. Then

dw_dwdu_ 1
dt dudt 2va Y
-1 1 o= ¢
2 VI + t2 VI + 2

Here we have used ¢ as a variable, but of course it makes no difference
what we call the variables.

dv

i

This problem can be simplified by letting p = ¢> + 1/gandv = p3. With
these symbols the chain rule is

1 -3
2. Letv =(q3+71-) ; find

The following example will not be explained, since you should be able
to work it by inspection.

o oo (-

Go to 200.
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200
Now try the following problem:
Which expression correctly gives

i 2y-2
dx(2x+7x) ?

(a) -2(2 + 14x)3

(b) -22 + 14x)"%2x + Tx?)
() (2x + 7x3732 + 14x)
d) -22x + 7Tx3)73(2 + 14x)

The correct answer is [alblcldl

If right, go to 203.
Otherwise, go to 201.

201

Here is how to work the problem in 200. Suppose we let w = =2 and

u = 2x + 7x2 Then

% = 2 + 14x.
Hence
do_dwdu_ d . odu
dx dudx du
= -2y 8 ‘é—z =-2(2x + 7xH)~32 + 14x).
Try this problem:

Find (c%w’ where w = 12¢* + 7q, and ¢ = 52 + 4.

ds

For the solution, go to 202.
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202
The problem in frame 201 can be solved by using the chain rule:

dw_ dwdg
ds dgds

We are given that w = 12¢* + 7g and q¢ = s* + 4, so

Z—l; =48¢% + 7 and % = 2s.
Substituting these, we have
dw

T (48¢° + T)(2s) = [48(s? + 4)* + T1(2s).

If you wrote this result, go on to 203. If you made a mistake, you should
study the last few frames to make sure you understand the application of
the chain rule. Don’t be confused by the names of variables.

Then go to 203.

203

The next problem is to find dix (%) in terms of v and %, where v

depends on x. The answer can be found using the quotient rule, but since
we are going to use it to prove the quotient rule, don’t use that rule here.
Instead, try the chain rule.

Which of the following answers correctly gives (%c (%)”

1d dx , d
[—FI:I Eu_}a | E | _dT: | none of these]

If right, go to 205.
If wrong, go to 204.

204

To find C%: (%), we apply the chain rule in the following way. Suppose we

_1_ g df_dfdv df _d o _ 1 ai_ _1ldv
L v U dx dvdx’buth v’ % dx(v)__uzdx'

Go to 205.

Answer: (200) d
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206

Now, by combining the result of the last frame with what you have
learned previously, you should be able to derive the expression for the
derivative of the quotient of two functions. This is an extremely impor-
tant relation. Try to work it out for yourself.

Find ;—x(g) in terms of u, v, (;—Z, %

To check your answer, go to 206.

206

You should have obtained the following quotient rule which was
presented without proof in frame 194, though possibly arranged dif-
ferently.

) m

If you wrote this or an equivalent statement, go on to 207. Otherwise,
study the derivation below.

If we let p = %, then our derivative is that of the product of two
variables.

vidx v dx v?

Go to 207.




108 Differential Calculus

207

Before going on to new material, let’s summarize all the rules for
differentiation we have used so far. Fill in the blanks. @ and n are
constants, u and v are variables that depend on x, w depends on u, which
in turn depends on x.

4 @-= LA
2 (@)= 2 (w) =
2n- 5-
c%c (") = (%c [ww)] =
Go to 208.
208

Here are the correct answers. The frame in which the relation was
introduced is shown in parentheses.

dv

dw=0. am L+ p=2., & (186)
Lay=a  am 9y = ue + 0% (189)
%C g 276 % ( % ) _ v(du/dx)u—zu(dv/dx)' (194)
g—x(x") =nx"1.  (180) o L fwiw))= Z—'lf % (198)

If you would like some more practice on problems similar to those in
the last two sections, see review problems 34 through 38..

Go to 209.

1 dv

Answer: (203) 2 dx



Differentiating Trigonometric Functions 109

Differentiating Trigonometric Functions

209

Trigonometric functions occur in so many applications that it is useful
to know their derivatives. For instance, we would like to know é%(sin 6).

By definition,

d, . . sin(6+A6)—sin
il A8 :

It is not at all obvious how to evaluate this expression, so let’s take
another approach for a minute and try to guess geometrically what the
result should be by looking at a plot of sin 6.

Here 1s a plot of sin 6 vs. § over the interval 0 < 6 < 2. (§is measured
in radians, but for reference, a few of the angles are shown in degrees.)

sin @
N

A 80 270 —

90° 180", P 360° |

!' \"[ l i 8 (rad)
[} 1 z 2 A\ ¥ //27r

N v
-1
d .
‘To(slna)
1
1 || 2 3] 4 | |5 6 || 7

0 z = 31 27 8rzd)
=1

Draw a sketch of %(sin 6) in the space provided. To check your sketch,
Go to 210.
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210
sin
|
1 -~
90° 80° 270° 360°
5 [,‘r \‘1 " /M 6 (rad)
1z 2 ,\\ ¥ PpLi
N 7
-1
ii—e(sin 0)
1
//
3] 4 /1/ 6 11 7 gad
0 % g T / 321 2
‘ N d
=il i }

Here are drawings of sin § and ‘-;l—a(sin 6). Note that where the slope of

sin @ is greatest, at 0 and 2, d (sm 0) has its greatest value, and that

. B 37
where the slope is 0, at 8 = 3 Tand = 2 de(sm ) is 0.

[If your sketch looked very different from the drawing shown above,
you should review frames 160 and 169. This problem is quite similar to

problem (c) in frame 168.]
Now, by looking at the graphs, you may be able to guess the correct

answer for ; (sin 6). Can you?

d . _
‘n(sm 6) =

Go to frame 211 to see if your answer is right.
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211

Here is the rule:

d .
a6 (sin 6) = cos 6.

Congratulations if you guessed this result in the last frame! If you
arrived at some other result, study the drawings in frame 209 and
compare the second one with the graph of cos § shown below.

Formal proof that g-(—) (sin 6) = cos 6 is given in Appendix A4. It is

important to realize that this relation is only true when angle is mea-
sured in radians—this is why the radian is such a useful unit.

Let’s try to guess the result for ‘%9 (cos 6) from a plot of cos 6.

Draw a sketch of g—a (cos 6) in the space provided, and make a guess at

the result.
d
a6 cos 6 =
cos @
1
//
| /1/ 1 0
0 [\; ™ P e 2r
\ 4
-1
d
d_ﬂ(eos 6)
1
] ] | 9
0 3 T ¥ 2m
-1

Go to 212.
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212
d . d :
Here are plots of cos 8 and a6 (cos ). The result is 76 (cos 6) = —sin 6,

cos 6
1
//
l V4 l 0
° IN Il [ A% | >
\ Yy
-1
£ (cos )
1
r \\

| 4 | N ¢
0 x /'1r ¥ 2y
1 = /

as should seem reasonable from the graph. This relation also is formally
proved in Appendix A5.

To summarize:

d . _
a6 (sin 6) = cos 6.

d .
a6 (cos 6) = —sin 6.
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Using these results, ﬁnd (tan ). (Hint: use tan 6 = 31_1818 and apply
the quotient rule, frame 194.)

d -
a0 (tan 6) =

Go to 213.

213

Using the hints in frame 212 we have

sin 8)

d -4
ﬁ(tan 0= dG( cos 6

cos 6 o (sm 6) — sin 6—(cos /)]

cosZ 6

_cos®0+sin?9_ 1
cos? 9 cos? 8

=gec? g.
Now find the correct answer:

(%)(sec 0) = [sec Otan 6 | —sec 8 tan 8 | sec 6)

If right, go to 215.
If wrong, go to 214.
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214
Using the definition sec § = Lo, and the result in frame 204, we have
d 1 ) 1 dcosd
(sec -y do(cos [ cos?0 do
1 . tan 8
=4 =
a2 0 " ¥ = o 0
=sgec 0 tan 6.

(All three of these expressions are equally acceptable.)
Go to 215.

215

Choose the correct answer:

‘%’(sin 6)2 = [sin 6 | 2 cos 8 | cos 82 | 2 sin 6 cos 6]

If right, go to 217.
If wrong, go to 216.

216
You could have analyzed the problem as follows:
Suppose we let u(6) = sin 6. Then ((ii—l‘; = cos 6, and

d

(sm 02 = 0

_d e
du(u )dG

du
—2u%—251n0c030

Where did you go wrong? Find your error and be sure you understand it.
Then

Go to 217.

Answers: (213) sec ¢ tan 6
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217

Whichlot the following is (%’(cos 63)?

[cos 6 sin 63 | =362 sin 6 | 3 cos 2 63 sin 6 | 3 cos? 4]

If right, skip on to frame 221.
If wrong, go to frame 218.

218

Did you forget how to use the chain rule to differentiate a function of a
function? We can think of cos 6° as a function of a function. Suppose we
write it this way:

w = cos u, u=6.
Then
dw_dwdu
dé du dé’
dw_ . g3 du _ o0
du——smu——smo s a6 36%,
S0
d 3 2 i 03
a,(cos 8°) = —36% sin 6°.
Go to 219.
219

If w (Greek letter omega) is a constant, which expression correctly
gives i(sin wt)?
dt

[cos wt | w cos wt | sin wt | none of these]

If right, go to frame 221.
Otherwise, go to 220.
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220

To solve problem in 219, let w = sin u, u = wt,
= _ d. o _
Gt du dt o8 xa(wt) = w cos wt.

Go to frame 221.

221

Before you goon to the next section, let’s state once more the important
relations we have introduced in this section:

d, . i
a—o(sm 6) = cos 6,

d -
d—o(cos 6) = —sin 6.

There are two more functions which are so common that it is worth
knowing their derivatives by heart: logarithmic and exponential. To
learn about them,

Go to 222.

Differentiation of Logarithms and Exponentials

222

Our next task is to learn how to differentiate logarithms. If you feel
shaky about logarithms, review frames 75-95 of Chapter 1 before going
on to the next frame.

Go to 223.

Answers: (214) 2 sin 6 cos 8
(217) —-362 sin ¢°
(219) @ cos wt
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223

In this section we are going to work with natural logarithms, In x =
log, x. Natural logarithms were defined in frame 94. The base e =
2.71828. . . was discussed in frame 109.

Here is a table showing In x for a few values of x.

x | Inx 5 In x
1| 0.000 30 | 3.40
2| 0.69 100 | 4.61
e | 1.00 300 | 5.70

3| L10 1000 | 6.91
10( 2.30 3000 | 8.01

Using the table and the rules for manipulating logarithms, find the
answer which is most nearly correct for each of the following questions:
In6=1[22]3.1]6/|1.79]
In V10 = [1.15 | 2.35 | 2.25 | 1.10]
In 300% = (126 | 185 | 17.10 | 3.41}

If all your answers are correct, go to 225.
If you made any mistakes, go to 224.

224

The rules for manipulating logarithms are summarized in frame 91.
These rules apply to logarithms of all bases, including the base e.

In6 =In(2x3)=In2+1n3 =069+ 110 = 1.79,
In V10 = 1n 10Y2 = % 1n 10 = % X 2.30 = 1.15,
In 300% = 3 1n 300 = 3 x 5.70 = 17.10.

Go on to 225.
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225

Here is a plot of In x in terms of x. If your calculator provides In x, check
some of the points on this graph.

Inx
3 4
Slope = Yo ! 1
2 Slope = % ™\ o
|y
I~ Slope = % =
1 % \y . V’
| Slope /
=2
0 I x
1 2 & 4 5 6 7 8 9 10
w4
|l

You can find the qualitative features of % (In x) by looking at the

graph. For small values of x the derivative islarge, and for large values of
x the derivative is small. In the figure above tangents are shown at a few
points, and their slopes are listed in this table.

Perhaps you can guess the formula for (% (Inx). Try tofillin the blank.

d -
d_x(ln x) =

To learn the correct expression, go to 226.

Answers: (223) 1.79, 1.15, 17.10
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226

Here is the formula for the derivative of a natural logarithm:

d =1
d—x(ln x) = x.

If you did not guess this result, you can check that it agrees with the
numerical values in the table in frame 225.

The reason that e is so useful as a base for logarithms is that it leads to
such a simple expression. This relation is derived in Appendix A9. Itisso
important that it is worth committing to memory.

Go to 227.

227

Skip on to frame 228 if you do not have a scientific calculator. Using a
calculator, you can numerically confirm that dix(ln x)= }C The procedure

is to calculate value of [In (x + A) — In xJ/A for successively smaller val-
ues of A. The result should approach 1/x.

Try the following for x = 5, for instance, or any other value you may
wish to choose. For x = 5, In x = 1.6094 and In' x = % = 0.2.

A In(x + A) In(x + i) -Inx
2

1

0.1

0.01

Go to 228.
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228

Try this problem: Which of the following gives d%(ln x2)?

112

x2 x2

2lnx| In x]

®In
K InN

If right, go to 230.
Otherwise, go to 229.

229

The solution of this problem is quite straightforward. We could make
use of the chain rule. However, let’s solve it another way.
Since In x2 = 2 In x,

You should be able to do this one:

Eiat | = | none of these]
x x

%(lnx)2=[2 Inx | n

If right, go to 231.
Otherwise, go to 230.

230

2Inx

%(lnx)2=21nx %(lnx)= b

Go to 231.
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231
dinr _
@ —g—=
dln 5z _
(b) 5
For the correct answers, go to 232.
232

The correct answers are
1 1
(a) ;, (b) ;

If you got both of these, you are doing fine, so you may skip ahead to
frame 234. If you missed either one,

Go to frame 233.

233

dlnx

(a) dlnr _ %for the same reason that pra :lc It makes no dif-

dr
ference whether the variable is called r or x.

(b) Thesimplest way to find %c (In5z)istorecall thatln5z=1n5 + Inz.

Hence,

1
z

N -

d _d d -
£(In5z)— E(ln5)+dz(lnz)—0+

Go to 234.
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234
Another function we would like to differentiate is
y=a (a is a constant).
(Warning: Do not confuse a* with x*, where x is a variable and a is a
constant.)
We can differentiate a* by taking the natural logarithm:
Iny=Ilna*=xlna.

Now differentiate both sides of this equation with respect to x:

¢%c(lny)=%lna,

ldy _
ydx—lna,
dy _ .
d—}—ylna—a‘lna.
Thus,
d 5
d—x(a")—a In a.
Go to 235.
235

The preceding frame gave the result

da* _
dx - a*lna
A particularly simple but important case occurs when a = e. Since

Ine=1,

Answers: (228) % (230) %
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With the above, can you write the values for the following?

(a) %=

de™® _

See 236 for the correct answers.

236

The answers are

de”™
(a) = RalGe
and
b L=

If you did both of these correctly, go to 237. Otherwise, continue here.
The result (a) is obtained by letting © = cx and following the usual
procedure for a function of a function (i.e., using the chain rule, frame

194). Thus

=——S-=e% = ce™.
du dx

The result (b) is a special case of (a) with ¢ = 1.

Go to 237.
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237

Skip on to frame 238 if you do not have a scientific calculator.
You can confirm numerically that (—f—x(e’) = ¢ inthe same way that you

confirmed %(ln x) = % in frame 227. Calculate the following for some

value of x, for instance, x = 10. See whether the last column approaches
el® = 22,026.46. . . .

eh
P N

1

0.1

0.01

Go to 238.
238
Ifz = £, what is 57
Encircle the correct answer.
[ 1 | =2 | -1 el lig’i
xlnx  (Inx) x(In x) x

If right, go to 240.
Otherwise, go to 239.
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239

One way to find the derivative of 1s to use the chain rule.
Let u = In x. Then

d( 1) _d(1) duldu 11
dx(lnx)_dt(u)_ du dx  ulx
mr%_x?_'

Go to 240.

240

A number of relations have been used in this section and you may want
to give them a quick review before going on. Here is a list. The most
important ones are in boxes.

e = 2.71828. . .,
In x = log, x,
In (x) = 2.303. . . logy x,

d 1
‘Tx(lnx) =2

— (@) =dlna,

@ = e

4
dx

Go to 241.

241

We have learned how to differentiate the most useful common func-
tions. The rest of this chapter will be spent on some special topics related
to the use of derivatives. However, you may want a little more practice in
differentiation before you go on. If so, see problems 34 through 58 on page
247. Whenever you are ready,

Go to 242.
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Higher-Order Derivatives

242

Suppose y depends on x and we have obtained the derivative ix If we
next differentiate % with respect to x, the result is called the second

. . LY
derivative of y with respect to x, and is written e
Can you do the following problem?

If y = 2x°, thend =[6x2]12¢ | 0 | x2 | x]

dx2

If right, go to 245.
If wrong, go to 243.

243

Here’s how to do the problem in 242.

y=24°,
dy_o 2
dx—Gx )
d% d(dy\d
T Gl ) e = 12
Try this one:
L | 1
y=x+_
dy 1 1 2
p—[—? | p | +x—3| none of these]
If right, go to 245.
If wrong, go to 244.
-1

Answer: (238) W
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244
Here is the solution to 243.
1
y=x + ;a
a1
dx T x?
d? _ -2)_ 2
T=0-1(3)==

Go to 245.

245

An example of a second derivative with which you may already be

familiar is acceleration.
Velocity is the rate of change of position with respect to time.

&8

Acceleration a is the rate of change of velocity with respect to time.

Hence
a = @
dt’
It follows then that
d = d%s

a=E(E de?”

Go to 246.
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246
The position of a particle is given by
S = A sin ot.

A and o (omega) are constants. Find the acceleration.

Answer: [0 | Aw cos ot | (Aw cos wt)? | —Aw? sin wt].

If right, go to 248.
If wrong, go to 247.

247

. d%S _d? .
Acceleration = diE - ar (A sin of).
%‘?=% (A sin wt) = Aw cos wt (see frame 219),
d_ZS_i(d_S -4 E 2
2 - dt dt)— at (Aw cos wt) = — Aw® sin wt.
Go to 248.
248

There is really nothing essentially new about a second derivative. In
fact, we can define derivatives of any order n, where n is a positive

n
integer. Thus, ;T,]f is the nth derivative of f with respect to x. Try this

problem:
4 dy
If f = x*, find el

Answers: (242) 12x (243) x%
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d4f =[x |4x* | 0] 6414x3x2x1]

Go to 249.

249

2 el iall s 1})

=%(4x3) =%(4 X 3x2) =% (4X 3 X 2x)

=4x3X2x1

We can easily generalize this result:

;:n(x")=n><(n—1)x(n_2)x...x1

=n!
[n! is called n factorial andisn X (n-1) X (n=2) X - - - X 1.]

For more practice on higher-order derivatives, see problems 59
through 63 on page 248.

Go on to 250.

Maxima and Minima

250

Now that we know how to differentiate simple functions, let’s put our
knowledge to use. Suppose we want to find the value of x and y at which

= flx)

has a minimum or a maximum value in some given region. By the end of
this section we will know how to solve this problem.

Go to 251.
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251

Here is the graph of a function. At which of the points indicated does y
have a minimum value in the domain plotted?

y
D

A\‘/B x

c

[AIB|C|D|AandB | C andD]

If correct, go to 253.
If wrong, go to 252.

252

The minimum value of y is at point C only, since y has its smallest
value at point C, at least for the domain of x plotted.

Yy
D

>

N [

Answers: (246) —Aw? sin wt
(248)4 x 3 x 2 x 1
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At A and B, y has the value 0, but this has nothing to do with whether
or not it has a minimum value there.
Point D is a maximum value of y.

Go to 253.
253

We have shown that point C corresponds to a minimum value of y, at
least insofar as nearby values are concerned, and that D corresponds
similarly to a maximum value.

There is an interesting relation between the points of maximum or
minimum values of y and the value of the derivative at those points. To
help see this, sketch a plot of the derivative of the function shown, using
the space provided.

To check your sketch,

Go to 254.
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254

If you did not obtain a sketch substantially like this, review frames
160 to 169 before continuing.

<

>/'
-]

X

This simple example should be enough to convince you that if f(x) hasa
maximum or a minimum for some value of x within a given interval, then
its derivative [ is zero for that x.

One way to tell whether it is a maximum or a minimum is to plot a few
neighboring points. However, there is an even simpler method, as we
shall soon see.

Go to 255.

Answer: (251) C
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255
Test yourself with this problem:
Find the value of x for which the following has a minimum value.

f(x) = x2 + 6x.

[-6 | =3 | 0 | +3 | none of these]

If right, go to 258.
If wrong, go to 256.

256
The problem is solved as follows:
The maximum or minimum occurs where x satisfies f' = 0.
flx) = x2 + 6x, f'=2x+6.
Thus the equation for the value of x at the maximum or minimum is
2¢x+6=0 or 75 = =g,
Here is another problem:

For which values of x does the following f(x) have a maximum or
minimum value?

_ 2
f(x) = 8x + ;.
1

1 1 1
[Z | _Z|_4 | 2and—4l§and—§]

If you were right, go to 258.
If you did not get the correct answer, go to 257.
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257
The problem in frame 256 can be solved as follows:

At the position of maximum or minimum, f' = 0. Since

f(x)=8x+g, f'=8—£2.
x x

The desired points are solutions of
2 2

_2—
8—;—0 or xt=3=

=

Thus atx = + ¥2and x = — %, f(x) has a maximum or a minimum value.
A plot of f(x) is shown in the figure, and, as you can see, x = % yields a
maximum, and x = +% yields a minimum.

f(x)

16 1
12 1
81 Minimum
sl
. : e
-2 =1 4 1 2

Maximurnﬂ L

Incidentally, as you can see from the drawing, the minimum falls
above the maximum. This should not be paradoxical, since we are talk-
ing about local minima or maxima—that is, the minimum or maximum
value of a function in some small region.

Go to 258.

258
We mentioned earlier that there is a simple method for finding

whether f(x) has a maximum or a minimum value when f' = 0. Let’s find
the method by drawing a few graphs.

Answers: (255) -3 (256) Y2 and -2
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Below are graphs of two functions. On the left, f(x) has a maximum
value in the region shown. On the right, g(x) has a minimum value. In the
spaces provided, draw rough sketches of the derivatives of f(x) and g(x).

Now, let’s repeat the process again. Make a rough sketch of the second
derivative of each function (i.e., sketch the derivatives of the new func-
tions you have just drawn).

fr g"

Perhaps from these sketches you can guess how to tell whether the
function has a maximum or a minimum value when its derivative is 0.
Whether you can or not,

Go to 259.
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259

The sketches should look approximately like this.

f g

f g

By studying these sketches, it should become apparent that wherever
f'=0,

f(x) has a maximum value if f" < 0,
and f(x) has a minimum value if f" > 0.

(If f* = 0, this test is not helpful and we have to look further.)

If you are not convinced yet, go back and sketch the second derivatives
of any of the functions shown in frames 164, 166, or 168 [(c) or (d)]. This
should convince you that the rule isreasonable. Whenever you are ready,

Go to 260.
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260
Here is one last problem to try before we go on to another subject.

Consider f(x) = e =" Find the value of x for which f(x) has a maximum or
minimum value, and determine which it is.

Answer:

To check your answer, go to 261.

261
Let’s solve the problem: f(x) = e, Using the chain rule, we find
f'= —2xe .

Maximum or minimum occurs at x given by
—2xe* = or x=0.
Now we use the product rule (frame 189) to get
fr=-2 + 4x% = (-2 + 4x%e "
Atx=0,f"=(-2+4 x0) X 1 =-2.Sincef" isnegative where f' =0, at
x = 0, f(x) has a maximum value there.

A word of caution—in evaluating a derivative, say f' at some value of
x,x = a, you must always first differentiate f(x) and then substitute x = a.
If you reverse the procedure and first evaluate f(a) and then try to
differentiate it, the result will simply be 0 since f(a) is a constant. Similar

care must be taken with higher-order derivatives.

Go on to 262.
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Differentials

262
So far we have denoted the derivative by the symbol y' or d—.f: Although

either symbol stands for llm the method of writing Zx suggests that

the derivative might be regarded asthe ratio of two quantities, dy and dx.
This turns out to be the case. The new quantities which we now introduce
are called differentials, and they are defined in the next frame.

Go on to 266.

263

dy

-axis
| X

Suppose that x is an independent variable, and that y = f(x). Then the
differential dx of x isdefined as equal to any increment, x, —x,, where x, is
the point of interest. The differential dx can be positive or negative, large
or small, as we please. We see that dx, like x, can be regarded as an
independent variable. The differential dy is defined by the following
rule:

dy = y' dx,
where y' is the derivative of y with respect to x.

Go to 264.

264

Although the meaning of the derivative y' is 11m ﬁ— , we can see from
the preceding frame that it can now be 1nterpreted as the ratio of the
differentials dy and dx, where dx is any increment of x and dy is defined

by the rule dy = y' dx.
Go to 265.
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265

It is important not to confuse dy with Ay. As was pointed out in frame
136, Ay stands for y, — y, = f(x;) — f(x,), where x, and x, are two given
values of x. Both dx and Ax (=x, —x,) are arbitrary intervals. dx is called
a differential of x, and Ax is called an increment of x, but their meanings
are similar here.

y-axis

(x1.51)

1 x-axis

The diagram should show that dy and Ay are different quantities.
Here we have set dx = Ax. The differential dy is then y' dx, while the
increment Ay is given by y, — y,. It is clear in this case that dy is not the
same as Ay.

Go to 266.

266

y-axis
dy
dx

L

Although dy and Ay are different, you can see from the figure that for
sufficiently small dx (with dx = Ax) dy is very close to Ay. We can write
this symbolically as

x-axis

. dy _
d:l=l?1r—>0 Ay .

Hence, if we intend to take the limit where dx—0, dy may be sub-
stituted for Ay. Furthermore, even if we don’t take the limit, dy is almost
the same as Ay, provided dx is sufficiently small. We, therefore, often use
dy and Ay interchangeably when it is understood that the limit will be

taken or that the result may be an approximation.
Go to frame 267.
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267

We can rewrite in differential form the various expressions for de-
rivatives given earlier. Thus, if y = x",

dy = d(x") = d%(x") dx = nx"! dx.

Find the following:
d(sin x) = [-sin x dx | —sin x | —cos x dx | cos x dx]
( 1) [dx dx dx

3

d(e")=[xe‘dx|dx|e‘dx|¢g]

If you missed any of these go to 268.
Otherwise, go to 269.

268

Here are the solutions to the problems in frame 267. The number of the
frame in which each derivative is discussed is shown in parentheses.

d(sin x) = (%L) dx = cos x dx (frame 211),
( ) [dx( )]dx‘ "% (frame 180),

e (%(e"))dx =e*dx (frame 235).

Go to 269.
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269

Here is an example of the use of a differential. The diagram shows the
surface of a disc to which a thin rim has been added. Suppose we want an
approximate value for the change areaAA which occurs when the radius
is increased from r to r + dr.

dA

dA=(—)dr= g

ar (wr® dr = 2ur dr.

dr
Go to 270.

270

The previous example can also be solved exactly by taking the differ-
ence of the two areas:

AA = 7(r + An?2—7r?2 = 27r Ar + w Ar2

When Ar is small compared with r, we can neglect the last term and we
see that

AA =27rAr.

If we let Ar = dr and assume that they are both small then, as we know
from frame 269,

dA = AA = 2xrdr.

(continued)
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Here is a more intuitive argument for the results. Since the rimis thin,
its area dA is the approximate length, 27r, multiplied by its width, dr.
Hence,

dA = 27rdr.

Go to 271.

271

Differentials are handy for remembering some important rules for
differentiation. For instance, the chain rule

dw_ dwdu

dx dudx
is almost an i