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Preface

Before you plunge into Quick Calculus, perhaps we ought to tell you what
it is supposed to do. Quick Calculus should teach you the elementary
techniques of differential and integral calculus with a minimum of

wasted effort on your part; it is designed for you to study by yourself.

Since the best way for anyone to learn calculus is to work problems, we
have included many problems in this book. You will always see the

solution to your problem as soon as you have finished it, and what you do

next will depend on your answer. A correct answer generally sends you to

new material, while an incorrect answer sends you to further explana-

tions and perhaps another problem.

We hope that this book will be useful to many different people. The
idea for it grew out of the problem of teaching college freshmen enough
calculus so that they could start physics without waiting for a calculus

course in college. However, it soon became apparent that the book would
be useful in many other ways. For instance, both graduate and un-

dergraduate students in economics, business, medicine, and the social

sciences need to use some elementary calculus. Many of these students

have never taken calculus, or want to review the course they did take;

they should be able to put this book to good use. Ambitious high school

students who want to get a head start on their college studies should find

Quick Calculus just the thing. Unlike most calculus texts, it emphasizes
technique and application rather than rigorous theories and is therefore

particularly suited for introducing the subject. Beginning calculus stu-

dents who want a different and simpler view ofthe subject should find the

book helpful either for self-instruction or for classroom use. We particu-

larly hope that this book will be ofuse to those people who simply want to

learn calculus for the fun of it.

Because of the variety of backgrounds of those who will use this book,

we start with a review of some parts of algebra and trigonometry which
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are useful in elementary calculus. If you remember your high school

preparation in these subjects, you will sail through this material in little

time, whereas if you have had little math, or have long been away from
math, you will want to spend more time on this review. As you will see,

one ofthe virtues ofthe book is its flexibility—the time you spend on each
portion depends on your particular needs. We hope that this will save you
time so that you will find the book's title appropriate.

Daniel Kleppner
Norman Ramsey

Cambridge, Massachusetts



Preface to the Second Edition

The hope expressed in the preface to the first edition that Quick Calculus

would be useful to many different people has been fulfilled, for over a

quarter of a million copies have been put to use. The major change in the

second edition is in the treatment of integration. Chapter 3 has been

completely rewritten; much of the material has been simplified, and a

new topic has been added—numerical integration. In addition, numer-
ical exercises to be worked with a hand-held calculator have been in-

troduced throughout the book. These are not an essential part ofthe text,

but we hope that readers who have a calculator will find them interesting

and useful. Many minor improvements have been made, and the refer-

ences have been updated.

Daniel Kleppner
Norman Ramsey

Cambridge, Massachusetts
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CHAPTER ONE

A Few Preliminaries

In this chapter the plan of the book is explained, and some elementary

mathematical concepts are reviewed. By the end of the chapter you will

be familiar with:

• The definition of a mathematical function

• Graphs of functions

• The properties of the most widely used functions: linear and

quadratic functions, trigonometric functions, exponentials,

and logarithms

Some problems in Quick Calculus require the use of a scientific calcu-

lator—a calculator that provides values for trigonometric functions and

logarithms. However, these problems, which are clearly marked, are

optional. You can skip them and master the text without a calculator,

although working the numerical problems will help to increase your

insight.

Getting Started

In spite of its formidable name, calculus is not a particularly difficult

subject. Of course you won't become a master in it overnight, but with

diligence you can learn its basic ideas fairly quickly.

This manual will get you started in calculus. After working through it,

you ought to be able to handle many problems and you should be pre-

pared to learn more elaborate techniques ifyou need them. But remem-

ber that the important word is working, though we hope you find that

much of the work is fun.

(continued)

1



2 A Few Preliminaries

Most of your work will be answering questions and doing problems.

The particular route you follow will depend on your answers. Your
reward for doing a problem correctly is to go straight on to new material.

On the other hand, if you make an error, the solution will usually be

explained and you will get additional problems to see whether you have

caught on. In any case, you will always be able to check your answers

immediately after doing a problem.

Many of the problems have multiple choice answers. The possible

choices are grouped like this: [a \ b \ c \ d]. Choose an answer by cir-

cling your choice. The correct answer can be found at the bottom of the

next left-hand page. Some questions must be answered with written

words. Space for these is indicated by a blank, and you will be referred to

another frame for the correct answer.

If you get the right answer but feel you need more practice, simply

follow the directions for the wrong answer. There is no premium for doing

this book in record time.

Go on to frame 2.

In case you want to know what's ahead, here is a brief outline of the

book: this first chapter is a review which will be useful later on; Chapter
2 is on differential calculus; and Chapter 3 covers integral calculus.

Chapter 4 contains a concise outline ofall the earlier work. There are two
appendixes—one giving formal proofs of a number of relations we use in

the book and the other discussing some supplementary topics. In addi-

tion, there is a list ofextra problems, with answers, and a section oftables

you may find useful.

A word ofcaution about the next few frames. Since we must start with
some definitions, the first section has to be somewhat more formal than
most other parts of the book.

First we review the definition ofa function. Ifyou are already familiar

with this, and with the idea ofindependent and dependent variables, you
should skip to frame 14. (In fact, in this chapter there is ample opportun-

ity for skipping if you already know the material. On the other hand,
some ofthe material may be new to you, and a little time spent on review
can be a good thing.)

Go to 3.
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Functions

The definition ofa function makes use ofthe idea of a set. Do you know
what a set is? If so, go to 4. If not, read on.

A set is a collection of objects—not necessarily material objects

—

described in such a way that we have no doubt as to whether a particular

object does or does not belong to it. A set may be described by listing its

elements. Example: the set of numbers, 23, 7, 5, 10. Another example:

Mars, Rome, and France.

We can also describe a set by a rule, for example, all the even positive

integers (this set contains an infinite number of objects). Another set

defined by a rule is the set of all planets in our solar system.

A particularly useful set is the set of all real numbers, which includes

all numbers such as 5, -4, 0, V2, -3.482, V2. The set ofreal numbers does

not include quantities involving the square root of negative numbers
(such quantities are called complex numbers; in this book we will be

concerned only with real numbers).

The mathematical use of the word "set" is similar to the use of the

same word in ordinary conversation, as "a set of golf clubs."

Go to 4.

In the blank below, list the elements of the set which consists of all the

odd integers between - 10 and +10.

Go to 5 for the correct answer.

Here are the elements of the set of all odd integers between -10 and
+ 10:

-9,-7,-3,-5,-1, 1,3,5,7,9.

Go to 6.
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Now we are ready to talk about functions. Here is the definition.

A function is a rule that assigns to each element in a setA one and only

one element in a set B.

The rule can be specified by a mathematical formula such asy = x2 , or

by tables of associated numbers, for instance, the temperature at each

hour ofthe day. Ifx is one ofthe elements in setA, then the element in set

B that the function /"associates with x is denoted by the symbol fix). [This

symbol fix) is the value of fat x. It is usually read as "fofx."]

The set A is called the domain x)f the function.

The set B of all possible values of fix) as x varies over the domain is

called the range of the function.

In general, A and B need not be restricted to sets of real numbers.

However, as mentioned in frame 3, in this book we will be concerned only

with real numbers.

Go to 7.

For example, for the function fix) = x2 , with the domain being all real

numbers, the range is

Go to 8.

The range is all nonnegative real numbers. For an explanation, go to 9.

Otherwise,

Skip to 10.

Recall that the product of two negative numbers is positive. Thus for

any real value of x, positive or negative, x2
is positive. When x is 0, x2 is

also 0. Therefore, the range of fix) = x2 is all nonnegative numbers.

Go to 10.
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10

Our chief interest will be in rules for evaluating functions defined by

formulas. If the domain is not specified, it will be understood that the

domain is the set of all real numbers for which the formula produces a

real value, and for which it makes sense. For instance,

(a) fix) = Vx Range =

(b) fix) = 1 Range =

Go to 11.

11

f(x) is real for x nonnegative; so the answer to (a) is all nonnegative

real numbers.

Vx is defined for all values ofx except zero; so the range in (b) is all real

numbers except zero.

Go to 12.

12

When a function is defined by a formula such as fix) = ax3 + b, x is

called the independent variable and fix) is called the dependent variable.

One advantage of this notation is that the value of the dependent vari-

able, say for x = 3, can be indicated by fi3).

Often, however, a single letter is used to represent the dependent

variable, as in

y = fix).

Here x is the independent variable and y is the dependent variable.

Go to 13.

13

In mathematics the symbol x frequently represents an independent

variable, /"often represents the function, andy = fix) usually denotes the

dependent variable. However, any other symbols may be used for the

function, the independent variable, and the dependent variable. For

(continued)
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example , we might have z = H{r) which is read as "z equalsHofr." Here r

is the independent variable, z is the dependent variable, H is the func-

tion.

Now that we know what a function means, let's move along to a

discussion of graphs.

Go to 14.

Graphs

14

If you know how to plot graphs of functions, you can skip to frame 19.

Otherwise,

Go to 15.

15

A convenient way to represent a function defined byy = fix) is to plot a

graph. We start by constructing coordinate axes. First we construct a

pair of mutually perpendicular intersecting lines, one horizontal, the

other vertical. The horizontal line is often called the x-axis, and the

vertical line the y-axis. The point of intersection is the origin, and the

axes together are called the coordinate axes.

y-axis

10--

5--

-4 -3 -2 -1

-5--

-10--

12 3 4
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Next we select a convenient unit of length and, starting from the

origin, mark off a number scale on the ac-axis, positive to the right and

negative to the left. In the same way we mark off a scale along they-axis

with positive numbers going upward and negative downward. The scale

of the y-axis does not need to be the same as that for the x-axis (as in the

drawing). In fact, y and x can have different units, such as distance and

time.

Go to 16.

16 •

We can represent one specific pair ofvalues associated by the function

in the following way: Let a represent some particular value for the

independent variable x, and let b indicate the corresponding value of

y = fix). Thus, b = fid).

y-axis

7
i

\p_

I

I

-J

We now draw a line parallel to they-axis at distance a from that axis,

and another line parallel to the x-axis at distance 6. The pointP at which

these two lines intersect is designated by the pair ofvalues (a, b) forx and

y, respectively.

The number a is called the ^-coordinate ofP, and the number b is called

the y-coordinate ofP. (Sometimes the x-coordinate is called the abscissa,

and the y-coordinate is called the ordinate.) In the designation ofa typical

point by the notation (a, 6) we will always designate the x-coordinate first

and the y-coordinate second.

As a review of this terminology, encircle the correct answers below.

For the point (5, -3):

jc-coordinate: [-5 |
-3

I 3 I 5]

y-coordinate: [-5 I
-3

I 3 I 5]

(continued)
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(Remember that the answers to multiple choice questions are ordinarily

given at the bottom of the next left-hand page. Always check your

answers before continuing.)

Go to 17.

17

The most direct way to plot the graph ofa functiony = fix) is to make a

table of reasonably spaced values ofx and of the corresponding values of

y = f(x). Then each pair ofvalues (x, y) can be represented by a point as in

the previous frame. A graph ofthe function is obtained by connecting the

points with a smooth curve. Of course, the points on the curve may be

only approximate. If we want an accurate plot, we just have to be very

careful and use many points. (On the other hand, crude plots are pretty

good for many purposes.)

Go to 18.

18-

As an example, here is a plot ofthe functiony = 3X2 . A table ofvalues of

x and y is shown and these points are indicated on the graph.

X
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Check your answer. Ifincorrect, study frame 16 once again and then go
to 19. If correct,

Go on to 19.

19

Here is a rather special function. It is called a constant function and
assigns a single fixed number c to every value of the independent vari-

able, x. Hence, fix) = c.

y-axis

-4 -3 -2 -

(0.3)

12 3 4

This is a peculiar function since the value of the dependent variable is

the same for all values of the independent variable. Nevertheless, the

relation fix) = c assigns exactly one value of fix) to each value of x as

required in the definition ofa function. All the values offix) happen to be

the same.

Try to convince yourself that the graph of the constant function

y = fix) = 3 is a straight line parallel to the x-axis passing through the

point (0, 3) as shown in the figure.

Go to 20.

20

Another simple function is the absolute value function. The absolute

value of x is indicated by the symbols
I x I. The absolute value of a

number x determines the size or magnitude of the number without
regard to its sign. For example,

I
-3

!
=

I
3 I

= 3.

(continued)
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Now we will define I x I
in a general way. But first we should recall the

inequality symbols:

a > b means a is greater than b.

a 3= b means a is greater than or equal to 6.

a < b means a is less than b.

a =£ 6 means a is less than or equal to 6.

With this notation we can define the absolute value function,
I
x I, by

the following two rules:

-I
if x > 0,

if x < 0.

21

Go to 21.

A good way to show the behavior of a function is to plot its graph.

Therefore, as an exercise, plot a graph of the function y =
I x I in the

accompanying figure.

y-axis

-5 -4 -3 -2 -1 12 3 4 5

To check your answer, go to 22.

Answer: (18) (3, 27)
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22

The correct graph for
I

jc I is

-5-4-3-2-10 12 3 4 5

This can be seen by preparing a table of x and y values as follows:

JC
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Here is an example: Encircle the letter which identifies the graph of

y = 3x - 3. [A I B I C]

i
1—i

1— i-axis

The correct answer is on the bottom ofthe next page. Ifyou missed this or

if you do not feel entirely sure of the answer, go to 24.

Otherwise, go to 25.

24

You were given the function y = 3x - 3. The table below gives a few

values of x and y.

X
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A few of these points are shown on the graph, and a straight line has

been drawn through them. This is line B of the figure in frame 23.

Go to 25.

25-

Here is the graph of a typical linear function . Let us take any two

different points on the line, (x2 , y2) and (*i, y i). We define the slope ofthe

line in the following way:

Slope = y2-yi
y-ax's

X2 — Xi
fxaotth

fri.yi)

>2-yi

The idea ofslope will be very important in our later work, so let's spend a

little time learning more about it.

Go to 26.

26

Ifthe x and y scales are the same, as in the figure, then the slope is the

ratio of vertical distance to horizontal distance as we go from one point on

the line to another, providing we take the sign ofeach line segment as in

the equation of frame 25. If the line is vertical, the slope is infinite (or,

more strictly, undefined). It should be clear that the slope is the same for

any pair of two separate points on the line.

Horizontal distance = *2-*i

J—I—I—I— jt-axis

Go to 27.
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27—

If the vertical and horizontal scales are not the same, the slope is still

defined by

~, _ vertical distance
p horizontal distance

'

but now the distance is measured using the appropriate scale. For in-

stance, the two figures below may look similar, but the slopes are quite

different. In the first figure the x and y scales are identical, and the slope

is V2. In the second figure the y scale has been changed by a factor of 100,

and the slope is 50.

Since the slope is the ratio oftwo lengths, the slope is a pure number if

the lengths are pure numbers. However, if the variables have different

dimensions, the slope will also have a dimension.

Below is a plot of the distance traveled by a car vs. the amount of

gasoline consumed.

H l Us 2

Gasoline (gallons)

Here the slope has the dimension or unit of miles/gallon (or miles per

gallon). What is the slope of the line shown?

Slope = [10 I
20 I 30 I 40] miles/gallon

If right, go to 29.

Otherwise, go to 28.

Answer: (23) B
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28
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30

The equation y = Ix - 5 can be written in the form y = mx + 6 ifm = 7

and 6 = -5. Since slope = m, the line given has a slope of 7.

Go to 31.

31

The slope of a line can be positive (greater than 0), negative (less than

0), or 0. An example of each is shown graphically below.

Positive slope Negative slope slope

Note how a line with positive slope arises in going from left to right,

while a line with negative slope falls in going from left to right. (It was
pointed out in frame 26 that the slope of a vertical line is not defined.)

Indicate whether the slope of the graph of each of the following equa-
tions is positive, negative, or zero by encircling your choice.

Equation

1. y = 2x-5
2. y = -3x
3. p = q - 2

4. y = 4

Slope

[+1-10]
[+1-10]
[+1-10]
[+1-10]

If all right, go to 33.

If you made any mistakes, go to 32.

32

Here are the explanations to the questions in frame 31.

In frame 29 we saw that for a linear equation in the formy = mx + 6 the

slope is m.

Answer: (27) 20 miles/gallon (29) 7
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1 y = 2x - 5. Here m = 2 and the slope is 2. Clearly this is a positive

number. See Figure 1 below.

2. y = -3x. Here m = -3. The slope is -3, which is negative. See Figure

2 below.

3 p = q_ 2. In this equation the variables arep and 7, rather thany and

x. Written in the form p = mq + 6, it is evident that m = 1, which is

positive. See Figure 3 below.

4. y = 4. This is an example of a constant function. Here m = 0, b = 4,

and the slope is 0. See Figure 4 below.

33^ —

Here is an example of a linear equation in which the slope has a

familiar meaning. The graph below shows the position S on a straight

road ofa car at different times. The position S = means the car is at the

starting point.

Try to guess the correct word to fill in the blank below:

The slope of the line has the same value as the car's _

To see the correct answer, go to 34.
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34

The slope of the line has the same value as the car's velocity (or its

speed).

The slope is given by the ratio of the distance traveled to the time

required. But, by definition, the velocity is also the distance traveled

divided by the time. Thus the value ofthe slope of the line is equal to the

velocity.

Go to 35.

35

Now let's look at another type of equation. An equation in the form

y = ax2 + bx + c, where a, b, and c are constants, is called a quadratic

function and its graph is called a parabola. Two typical parabolas are

shown in the figure.

y-axis

Go to 36.

36

The values ofx at y = 0, shown by jc x and x2 in the figure on the left in

frame 35 correspond to values ofx which satisfy ax2 + bx + c = and are

called the roots of the equation. Not all quadratic equations have real

roots. (For example, the curve on the right represents an equation with

no real value of x when y = 0.)

Although you will not need to find the roots ofany quadratic equation

later in this book, you may want to know the formula anyway. If you

would like to see a discussion of this, go to frame 37.

Otherwise, skip to frame 39.

Answers: (31) + , -, +,0
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37

The equation ax2 + bx + c = has two roots, and these are given by

-6 + V62 - 4ac -b - Vb2 - 4ac
*1_

2a ' *2 2a

The subscripts 1 and 2 serve merely to identify the two roots. They can be

omitted, and the above two equations can be summarized by

_ -b ± V62 - 4ac
X

2a

We will not prove these results, though they can be checked by sub-

stituting the values for x in the original equation.

Here is a practice problem on finding roots: Which answer correctly

gives the roots of 3x - 2x2 = 1?

(a) ¥4(3 + V17); V4(3 - Vl7)
(b) -1;-V2
(c) Y4-,-V*

(d) 1; V2

Encircle the letter of the correct answer.

[a I b I c I d]

If you got the right answer, go to 39.

If you missed this, go to 38.

38

Here is the solution to the problem in frame 37.

The equation 3x - 2x? = 1 can be written in the standard form

2X2 - 3x + 1 = 0.

(continued)
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Here a = 2, b = -3, c = 1.

x = i- [_6 ± V62 - 4oc] = 7 [-(-3) ± V32 - 4 x 2 x 1]
2a 4

-|<3±1>.

X2 =\(3-l) = \x2 =
\.

Go to 39.

39

This ends our brief discussion of linear and quadratic functions. Per-

haps you would like some more practice on these topics before continu-

ing. If so, try working review problems 1-5 at the back of the book. In

Chapter 4 there is a concise summary ofthe material we have had so far,

which you may find useful.

Whenever you are ready, go to 40.

Trigonometry

40

Trigonometry involves angles, so here is a quick review ofthe units we
use to measure angles. There are two important units: degrees and
radians.

Degrees: Angles are often measured in degrees with 360 degrees

(written 360°) corresponding to one complete revolution. [The degree is

further subdivided into 60 minutes (60'), and the minute is subdivided

Answer: (37) d
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into 60 seconds (60"). However, we will not need to use such fine di-

visions here.] It follows from this that a semicircle contains 180°. Which
of the following angles is equal to the angle 6 (Greek letter theta) shown
in the figure?

[25°
I
45°

I
90°

I
180°]

If right, go to 42.

Otherwise, go to 41.

41

To find the angle 8, let's first look at a related example.

x.
The angle shown is a right angle. Since there are four right angles in a

full revolution, it is apparent that the angle equals

360°
= 90°.

The angle d shown in frame 40 isjust halfas big as the right angle; thus
it is 45°.

Here is a circle divided into equal segments by three straight lines.

Which angle equals 240°?

[a
I 6

I c]

Go to 42.
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42

The second unit ofangular measure, and the most useful for calculus,

is the radian.

To find the value ofan angle in radians, we draw a circle ofradius r, about
the vertex, O, ofthe angle so that it intersects the sides ofthe angle at two
points, shown in the figure as A and B. The length of the arc between A
and B is designated by s. Then,

ar ,. v s length of arc
6 (in radians) =— =—E—

r-
.

r radius

To see whether you have caught on, answer this question: There are

360 degrees in a circle; how many radians are there?

[1 I
2

I
7T I 2tt

I
360/tt]

If right, go to 44.

Otherwise, go to 43.

43

The circumference ofa circle is ird or 2irr, where d is the diameter and
r is the radius.

(3
The length of an arc going completely around a circle is the circumfer-

ence, 2irr, so the angle enclosed is 2-rrr/r = 2tt radians, as shown in the

Answers: (40) 45° (41) c
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figure on the left. In the figure on the right the angle subtends an arc

s = r. Encircle the answer which gives 8.

[1 rad I
Vi rad

I
Vfe rad I

tt rad I
none of these]

Go to 44.

44

Because many of the relations we develop later are much simpler

when the angles are measured in radians, we will stick to the rule that all

angles will be in radians unless they are marked in degrees.

Sometimes
v
the word radian is written in full, sometimes it is abbrevi-

ated to rad, but usually it is omitted entirely. Thus: 6 = 0.6 means 0.6

radian; 27° means 27 degrees; tt/3 rad means ir/3 radians.

Go on to 45.

45

Since 2-n rad = 360°, the rule for converting angles from degrees to

radians is

- 360°
lrad =

"2V-

Conversely,

10 2tt rad
1

360 •

Try the following problems (encircle the correct answer):

60° = [2tj73 I
tt/3

I
tt/4

I
tt/6] rad

w/4= [22 1/2° I

45°
I
60°

I
90°]

Which angle is closest to 1 rad? (Remember that tt = 3.14. . . .)

[30°
I

45°
I

60°
I

90°]

If right, go to 47.

If you made any mistake, go to 46.
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46—

Here are the solutions to the problems in frame 45. From the formulas

in frame 45, one obtains

cno en ~ 27rrad _ 2n rad ir ,60=60x -360 6— =T rad -

it , it w 360° 360°
A . e

-r-rad = -r x—— =—£— = 45°.
4 4 27T 8

1 rad =
360°

2tt

Since 2w isjust a little greater than 6, 1 rad is slightly less than 360°/6 =

60°. (A closer approximation to the radian is 57°18'.) The figure below

shows all the angles in this question.

Go to 47.

47

In the circle shown, CG is perpendicular to AE and

C

arc AB = arc BC = arc AH,

arc AD = arc DF = arc FA.

Answers: (42) 2tt (43) 1 rad

(45) tt/3, 45 degrees, 60°
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(ArcAB means the length ofthe arc along the circle betweenA and B,

going the shortest way.)

We will designate angles by three letters. For example, LAOB (read as

"angle AOB") designates the angle between OA and OB. Try the follow-

ing:

LAOD = [60°
I

90°
I
120°

I

150°
I

180°]

LFOH = [15°
I

30°
I

45°
I
60°

I

75°
I
90 degrees]

/.HOB = [1/4
I
1 I tt/2 I tt/4

I
tt/8]

If you did all these correctly, go to 49.

If you made any mistakes, go to 48.

48

Since arc AD = arc DF = arc FA, and since the sum of their angles is

360°, LAOB = 36073 = 120°.

LFOA = 120°, LGOA = 90°, LGOH = 45°.

Thus

LFOH = LFOG + LGOH = 30° + 45° = 75°.

LHOB = LHOA + LAOB = 45° + 45° = 90°.

Now try the following:

90° = [2tt I tt/6 I tt/2 I tt/8 I 1/4]

3tt = [240°
I

360°
I

540°
I

720°]

ir/6= [15°
I

30°
I
45°

I

60°
I

90°
I
120°]

Go to 49.

49

Rotations can be counterclockwise or clockwise. By choosing a conven-

tion for the sign ofan angle, we can indicate which direction is meant. An

(continued)
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angle formed by rotating in a counterclockwise direction is positive; an
angle formed by moving in a clockwise direction is negative.

Here is a circle of radius r drawn with x- and y-axes, as shown:

y-axis

We will choose the positive x-axis as the initial side and, for the

purpose of this section, we will measure angles from the initial to the

final or terminal side. As an example, the angle A is positive and B is

negative, as shown in the figure.

Go to 50.

50

Our next task is to review the trigonometric functions. One use of

these functions is to relate the sides of triangles, particularly right

triangles, to their angles.

y-axis

We will get to this application shortly. However, the trigonometric

functions can be defined in a more general and more useful way.

Do you know the general definitions of the trigonometric functions of

Answers: (47) 120°, 75°, tt/2

(48) tt/2, 540°, 30°
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angle 0? Ifyou do, test yourselfwith the quiz below. Ifyou don't, go right

on to frame 51.

The trigonometric functions of can be expressed in terms of the

coordinates x andy and the radius ofthe circle, r = Vjc2 + y
2

. These are

shown in the figure. Try to fill in the blanks (the answers are in frame

51):

sin ft =
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52

Below is a circle with a radius of 5. The point shown is (-3, -4). On the

basis of the definition in the last frame, you should be able to answer the

following:

sin 6 =
[
3/5 I

% I % I
-Vs

I

- 3/s
I

4/3 ]

cos = [% I

5
/a I % I -Vs I

-%
I
Va]

tan = [
3/5

I

5/3
I

3/4 | -Vs
I

-3/5 | %]
(-3, -4)

If all right, go to 55.

Otherwise, go to 53.

53

Perhaps you had difficulty because you did not realize that x and y
have different signs in different quadrants (quarters of the circle) while

r, a radius, is always positive. Try this problem.

Indicate whether the function required is positive or negative, for each

of the figures, by checking the correct box.



Trigonometry 29

54

Here are the answers to the questions in frame 53.

Figure A Figure B Figure C

sin

cos 8

tan 6

+
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Try these:

1. sin
2 + cos

2 = [sec
2

I 1 I tan2 I cot
2

0]

2. 1 + tan2 = [1 I
tan2 I

cot
2

I
sec

2
0]

3. sin
2 - cos

2 = [1 - 2 cos
2

I 1 - 2 sin
2

I
cot

2
6 I 1]

If any mistakes, go to 57.

Otherwise, go to 58.

57^ —
Here are the solutions to the problems in frame 56.

v2 x2 x2 + v2 r
2

1. sin
2 + cos

2 =^ +p =—^- = pr=l.

This is an important identity which is worth remembering. The other

solutions are

9 , sin
2 6 cos

2
B + sin

2
1 2 _

2. 1 + tan2 = 1+—2-t = rz = —3 o = seer 0.
cos cos cos

3. sin
2 - cos

2 0=1- cos
2
6 - cos

2 0=1-2 cos
2

0.

Go to 58.

58

The trigonometric functions are particularly useful when applied to

right triangles (triangles with one 90° or right angle). In this case is

Answers: (52) -Vs, -%, Va

(55) _ +,_
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always acute (less than 90° or tt/2). You can then write the trigonometric

functions in terms of the sides a, b of the right triangle shown, and its

hypotenuse c. Fill in the blanks.

sin ft =
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60

The following problems refer to the figure shown. (<f> is the Greek letter

'phi." The symbol between sides a and b indicates a right angle.)

cos 6 = [blc
I
ale

I
cla I elb

I
bla

I
alb]

tan <l>
= [blc \ ale

I
cla

I
elb

I
bla

I a/6]

If all right, go to 62.

Otherwise, go to 61.

61

You may have become confused because the triangle was drawn in a

new position. Review the definitions in 51, and then do the problems

below:

sin = [IIn
I
nil I m/n I

mil
I
nlm

I
l/m]

tan <f)
= [lln

I
nil

I
m/n I

mil
I
nlm

I
Urn]

If you missed either of these, you will have to put in more work

learning and memorizing the definitions.

Meanwhile go to 62.

62

It is helpful to be familiar with the trigonometric functions of 30°, 45°,

and 60°. The triangles for these angles are particularly simple.

Answers: (56) 1, sec* 0, 1 - 2 cos2 6
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Try these problems:

cos 45° = [1/2 I 1A/2 I 2V2 I 2]

sin 30° = [3 I
V3/2

I
2/3

I 1/2]

sin 45° = [1/2
I
1/V2

I
V2/2

I 2]

tan 30° = [1 I V3 I 1/V3 I 2]

Make sure you understand these problems. Then go to 63.

63

Many calculators provide values oftrigonometric functions. With such

a calculator, it is quite simple to plot enough points to make a good graph

ofthe function. Ifyou have such a calculator, plot sin 0for values between
0° and 360° on the coordinate axes below, and then compare your result

with frame 64. If you do not have a suitable calculator, go directly to 64

and check that sin 6 has the correct values for the angles you know.

sin 8
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64

Here is the graph of the sine function.

sin e

1.0
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Try to decide which graph represents each function.

cos ft [a\b\c\d\e\f\ none of these]

tan ft [o|6|c|d|e|f| none of these]

sin(-0): [a\b\c\d\e\f\ none of these]

tan(-0): [o|6|c|d|e|/| none of these]

If you got these all right, go to 67.

Otherwise go to 66.

66

Knowing the values of the trigonometric functions at a few important

points will helpyou identify them. Try these (°° is the symbol for infinity):

sin 0° = [0 I 1 I
-1

I

-oo
|

+oo]

cos 90° = [0 I 1 I
-1

I

-oo
I

+oo]

tan 45° -» [0 I 1 I
-1

I
-«

| +»]

sin 30° = [1 I 1/2 I V3 I
V3/2]

cos 60° = [1 I 1/2 I V3 I
V3/2]

Go to 67.

67

Because the angle 6 + 2tt is equivalent to as far as the trigonometric

functions are concerned, we can add 2ir to any angle without changing
the value of the trigonometric functions. Thus, the sine and cosine

functions repeat their values whenever increases by 2tt; we say that the
functions are periodic in with a period of 2tt or with a period of 360°.

(continued)
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Using this property, you can extend the graph of sin in frame 64 to

the following. (For variety, the angle here is in radians.)

Go to 68.

68

It is helpful to know the sine and cosine ofthe sum and the difference of

two angles.

Do you remember the formulas from previous studies oftrigonometry?
If not, go to 69. If you do, try the quiz below.

sin(0 + <j>)
=

cos(0 + <f>)
=

Go to 69 to see the correct answer.

69

Here are the formulas. They are derived in Appendix Al.

sin(0 + <j>) = sin cos <£ + cos sin <t>,

cos(0 + 0) = cos cos 4> - sin sin <f>.

[Note that tan(0 + <£) and cot(0 + (f>) can be obtained from these formulas
and the relation tan = (sin 0)/(cos 0).]

Answers: (65) 6, c, d, none of these;

(66) 0, 0, 1, y2 , y2
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By using what you have already learned, circle the correct sign in each
of the following:

(a) sin(0 - (f>)
= [+ I

-] sin cos 4>[+ I
-] cos sin </>

(b) cos(0 - <(>) = [+ I
-] cos cos (f>[+ I

-] sin sin <f>

If right, go to 71.

If wrong, go to 70.

70

Ifyou made a mistake in problem 68, you should recall from frame 55
that

sin(- <f>)
= - sin <j>,

cos(- <t>)
= + cos <f).

Then

sin(0 - <f>)
= sin cos(-<f>) + cos 6 sin(-<£)

= sin 8 cos 4> - cos 8 sin <£,

cos(0 -</>)= cos cos(-<£) - sin sin(-$)

= cos cos </> + sin sin 0.

Go to 71.

71

By using the expressions for sin(0 + (j>) and cos(0 + 4>), one can obtain

the formulas for sin 20 and cos 20. Simply let =
<f>. Fill in the blanks.

sin 20 =

cos 20 =

See 72 for the correct answers.
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72

sin 20=2 sin cos 0,

cos 20 = cos
2 - sin

2

= 1-2 sin
2

= 2 cos
2 0-1.

[Note, by convention, (sin 0)
2

is usually written sin
2

0, and (cos 0)
2

is

usually written cos
2

0.]

Go to 73.

73

It is often useful and convenient to use the inverse trigonometric

function, which is the value of the angle for which the trigonometric

function has a specified value. The inverse sine ofx is denoted by sin
-1

x.

(Warning: This notation is standard, but it can be confusing, sin
-1

x

always represents the inverse sine of x, not 1/sin x. The latter would be

written (sin x)'
1

. An older notation for sin'
1 x is arcsin x.)

For example, since the sine of 30° is V2, sin
-1

V2 = 30°. Note, however,

that the sine of 150° is also V2. Furthermore, the trigonometric functions

are periodic: there is an endless sequence of angles (all differing by 360°)

having the same value for the sine, cosine, etc.

Because the definition offunction (frame 6) specifies the assignment of

one and only one value off{x) for each value ofx, the range ofthe inverse

trigonometric function must be suitably restricted.

The inverse functions are defined by

y = sin
-1

x Domain: -1 < x < +1

y = cos
-1

x Domain: -1 < x < +1

y = tan
-1

x Domain: -°° < x < +0°

Range:
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74

Try these problems:

(a) siirHl/V^) = [30°
I

60°
I
tt/4 I tt/2]

(b) tan"1
1 = [tt/6

I
tt/4 I tt/3

I
tt]

(c) cos"
1
(1/2) = [tt/6

I
tt/4 I

tt/3
I tt]

Ifyou have a calculator with inverse trigonometric functions, try the

following:

(d) sin-
1
0.8 = [46.9

I
28.2

I
53.1 I 67.2] degrees

(e) tan"1 12 = [0.82 I 1.49 I 1.62 I 1.83] radians

(f> cos"
1
0.05 = [4.3 I

12.6 I 77.2 I 87.1] degrees

Check your answers, and then go on to the next section, which is the

last one in our reviews.

Go to 75.

Exponentials and Logarithms

75

Are you already familiar with exponentials? If not, go to 76. Ifyou are,

try this short quiz.

a6 = [5
a

I 5 log a
I
a log 5 I none of these]

ab+c = [a
b x ac

I a
b + ac

I ca
b

I (6 + c) log a]

afla? = [(f-g) log a I
aPg

I af
~8

I
none of these]

a = [0 I
1

I
a

I
none of these]

(a
6
)
c = [a

b x ac
I ab+c I

a**
I
none of these]

If any mistakes, go to 76.

Otherwise, go to 77.
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76

By definition am , where m is a positive integer, is the product of m
factors of a. Hence,

23 = 2 x 2 x 2 = 8 and 102 = 10 x 10 = 100.

Furthermore, by definition a~m = \la
m

. It is easy to see, then, that

am x an = am+n ,

„m—na

a
a = -% = 1 (m can be any integer),

(a
m

)
n = amn

,

(ab)
m = ambm .

Note that am+n is evaluated as a<m+n) ; the expression in the exponential

is always evaluated before any other operation is carried out.

If you have not yet tried the quiz in frame 75, go to 75. Otherwise,

Go to 77.

77

Here are a few problems:

3
2 = [6 I

8 I 9 I none of these]

l
3 = [1 I

3
I ^ I

none of these]

2~ 3 = [-6
I ^ I

-9
I
none of these]

o

i = [4
8

I

4" 8
I

16" 1
I none of these]

If you did these all correctly, go to 79.

If you made any mistakes, go to 78.

Answers: (74) (a) tt/4, (d) tt/4, (c) tt/3, (d) 53.1°, (e) 1.49, (f) 87.1
c

(75) None of these, ab x ac , af
~g

, 1, a!*
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78

Below are the solutions to problem 77. Refer back to the rules in 76 if

you have trouble understanding the solution.

32 = 3 x 3 = 9,

l
3 = 1 x 1 x 1 = 1 (l

m = 1 for any m),

0-3 _ 1 _ 1

43 1i, = 43-5 = 4-2 = J_ = 16-i
4s 16

Now try these:

(3" 3
)
3 = [1 I

3~9
I

3-27
I none of these]

52 /5\2 /5\
-1

3^
=

^(3) ' (3) '

^
6

'

none °^ tnese l

43 = [12
I
16 I 2

6
I
none of these]

Check your answers and try to track down any mistakes.

Then go to 79.

79

Here are a few more problems.

10° = [0 I
1 I 10]

10-! = [-1
I

1 I 0.1]

0.00003 = [| x 10" 3
I

10- 3
I
3 x lO" 5

]

0.4 x 10~ 4 = [4 x 10- 5
I
4 x 10- 3

I
2.5 x 10~ 5

]

6* \q-1 = [\ * 10 10
I 5 x 104

I 0.5 x lO"
4

]

If these were all correct, go to 81.

If you made any mistakes, go to 80.
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80

Here are the solutions to the problems in 79:

„-§-,

10- = i - 0.1,

0.00003 = 0.00001 x 3 = 3 x 10~ 5
,

0.4 x 10" 4 = (4 x 10- 1
) x 10- 4 = 4 x 10" 5

,

3jiiPl! = _3_ 10^ m J_ 7+3 = 4

6 x 10- 3 6 IP 2
1U -0.SX10 •

Go to 81.

81

Let's briefly review fractional exponents. If 6" = a, then b is called the

nth root of a and is written b = aVn . Hence 16 1/4 = (fourth root of 16) = 2.

That is, 24 = 16.

Ify = am/", where m and n are integers, then v = [a
Vn

]
m

. For instance.

Try these:

g2/3 =
(
gl/3)2 = 22

27
-2/3 = [1/lg | 1/gl |

i/9 | _i8 | none of these]

16
3/4 - [12 I 8 I 6

I 64]

If right, go to 84.

If wrong, go to 82.

82

27
-2/3 = (2

7l/3)-2 = 3-2 = y9(

163/4 = (16
1/4

)
3 = 23 = 8.

Answers: (77) 9, 1, Yb, 16"1
(78) 3~ 9

, (
5/3)

2
, 2

6

(79) 1, 0.1, 3 x 10-5
, 4 x 10" 6

, 0.5 x 10" 4
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Do these problems:

253/2 = [125 I 5 I 15 I none of these]

(o.ooooir
3/5 - [o.ooi

I
iooo i io-15

1 io- 26
]

If your answers were correct, go to 84.

Otherwise, go to 83.

83

Here are the solutions to the problems in 82.

253/2 = (25
1/2

)
3 = 53 = 125,

(o.ooooir 3'5 - uo- 5r 3/5 = io 15/6 = io3 = iooo.

Here are a few more problems. Encircle the correct answers.

(
27/64 X IO" 6

)
1 '3 = [

3/400 I

3/l6 X IO" 2
I %4 X IO" 4

],

(49 x 10-4
)
1/4 = [V7/10 I (10 x 7)- 2

I
V7/1000].

Go to 84 after checking your answers.

84

Although our original definition ofam only applied to integral values

ofm, we have also defined (a
m

)
1/n = am/n , where bothm and n are integers.

Thus we have a meaning for ap , wherep is either an integer or a fraction

(ratio of integers).

As yet we do not know how to evaluate ap ifp is an irrational num-
ber, such as 7ror V2. However, we can approximate an irrational number
as closely as we desire by fraction. For instance, it is approximately

31,416/10,000. This is in the form m/n, where m and n are integers, and
we know how to evaluate it. Therefore, y = ax , where x is any real

number, is a meaningful expression in the sense that we can evaluate it

as accurately as we please. (A more rigorous treatment of irrational

exponents can be based on the properties ofsuitably defined logarithms.)

Try the following problem.

£^ = [a~/3
I
o'+'- 3

I
a3nx

I
a(7T+x)l3

]

If right, go to 86.

If wrong, go to 85.
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85

The rules given in frame 76 apply here as if all exponents were

integers. Hence

g g _ 7T+X-3

a3

Here is another problem:

7T
2 x 2" = [1 I (27r)

2,r
I 27r

2+7r
I
none of these]

If right, go to 87.

If wrong, go to 86.

86

tt
2 x 2" is the product of two different numbers to two different

exponents. None ofour rules apply to this and, in fact, there is no way to

simplify this expression.

Now go to 87.

87

If you do not clearly remember logarithms, go to 88. If you do, try the

following test.

Let x be any positive number, and let log x represent the log ofx to the

base 10. Then:

10log * =
•

Go to 88 for the correct answer.

Answers: (81) Va, 8 (82) 125, 1000

(83) 3/400, V7/10 (84) a n+x
~ 3
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88

The answer to 87 is x; in fact we will take the logarithm ofx to the base
10 to be defined by

10 log x = x.

That is, the logarithm of a number x is the power to which 10 must be
raised to produce the number x itself. This definition only applies for

x > 0. Here are two examples:

100 = 102 , so log 100 = 2;

0.001 = 10- 3
, so log 0.001 = -3.

Now try these problems:

log 1,000,000 = [1,000,000
I
6

I 60 I 600]

log 1 = [0 I
1 I 10 I 100]

If right, go to 90.

If wrong, go to 89.

89

log 1,000,000 = log 106 = 6 (check, 106 = 1,000,000),

log 1 = log 10° = (check, 10° = 1).

Try the following problems:

log(104/10- 3
) = [10

7
I 1

I 10
I 7

I 70]

log 10" = [lOn
I n I

10"
I
10/re]

log 10-" = [-10n
I -re |

-10"
I -10/n]

If you had trouble with these, review the material in this section.

Make sure you understand these problems.

Then go to 90.
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90

Here are three important relations for manipulating logarithms, a

and 6 are any positive numbers:

log ab = log a + log b,

log(o/6) = log a - log b,

log a" = n x log a.

If you are familiar with these rules, go to 92. If you want to see how
they are derived,

Go to 91.

91

We can derive the required rules as follows. From the definition of

log x, a = 10loga and 6 = 10log6 . Consequently, from the properties of

exponentials,

ab = 10loga x 10log6 = iolo8 a+1°8 fc

.

Taking the log of both sides, and again using log 10* = x, gives

log ab = log iolo* a+1°8* = log a + log 6.

Similarly,

alb = io,oe a10-Iog6 = iolo* a-loK 6
.

log(a/6) = log a - log b

Likewise,

a" = (10
lo8a

)
n = 10" loga

,

so that

log an = n x log a.

Go to 92.

Answer: (85) None of these (88) 6, 0, (89) l,n,-n
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92

Try these problems:

Iflogn = -3, n = Wt I
V300

I Viooo]

10iog ioo = [10
io

1 20
I
100

I
none of these]

log 1000 3

log 100
L

2 '

' '

J

If right, go to 94.

If wrong, go to 93.

93

10ioB n = „
(
so if i g n = _3

j
n = io- 3 = i/jooo.

For the same reason,

10iog 100 = 100

log 1000 log 103
3

log 100 log 102 2
'

Try these problems:

y2 log 16 = [2 I 4 I 8 I
log 2

I
log 4]

logUog 10) = [10 I 1 I I
-1

I
-10]

Go to 94.

94

In this section we have discussed only logarithms to the base 10.

However, any positive number except 1 can be used as a base. Bases other

than 10 are usually indicated by a subscript. For instance, the logarithm

of 8 to the base 2 is written log2 8. This has the value of 3 since 23 = 8. If

our base is denoted by r, then the defining equation for logr x is

r
lo*r*= x.

(continued)
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All the relations explained in frame 91 are true for logarithms to any

base (provided, ofcourse, that the same base is used for all the logarithms

in each equation).

We shall later discuss natural logarithms, for which the base is the

number e = 2.71828 .... Natural logarithms are usually designated by

the symbol lnx = logc x. Many calculators give both logx [i.e., log10 x] and

In x.

Go to 95.

95

From the definition of logarithm in the last frame we can obtain the

rule for changing logarithms from one base to another, for instance from

base 10 to the base e.

Take login of both sides of the defining equation e
lnx = x,

\og(e
inx

) = log x.

Because log xn = n log x (frame 91), this gives

In x log e = log x

or

,
log x

In x - t*—

.

loge

The numerical value of log e is 1/2.303 . . ., so

In x= (2.303 . . .)logx.

Ifyou have a calculator which evaluates both In x and log x, check this

relation for a few values of x.

Go to 96.

Answers: (92) Viooo, 100, % (93) log 4,
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96

This concludes our review. In order to do actual computations involv-

ing trigonometric functions and logarithms, you will need their numer-
ical values. You can obtain these from a scientific calculator or from
published tables such as those in the The Handbook of Chemistry and
Physics (Chemical Rubber Publishing Co.). Also, scientific computers
invariably have programs for generating these functions.

Before going on, there are a few features ofthis book you ought to know
about. The last chapter, Chapter 4, summarizes the first three chapters

to help you review what you have learned. Take a look at that summary if

you feel the need. In addition, starting on page 245, there is a collection of

review problems with answers. In addition to the index at the back ofthe

book, there is a separate index of symbols on page 261.

As soon as you are ready, go to Chapter 2.



CHAPTER TWO

Differential Calculus

In this chapter you will learn

• What is meant by the limit of a function

• How the derivative of a function is defined

• How to interpret derivatives graphically

• Some shortcuts for finding derivatives

• How to recognize the derivatives of some common functions

• How to find the maximum or minimum values of functions

• How to apply differential calculus to a variety of problems

Limits

97

Before tackling differential calculus, we must learn about limits. The
idea ofa limit may be new to you, but it is at the heart ofcalculus and it is

important to understand the material in this section before going on.

Once you understand limits, you should be able to grasp the ideas of

differential calculus quite readily.

Limits are so important in calculus that we will discuss them from two

different points of view. First, we will discuss limits from an intuitive

point of view. Then, we will give a precise mathematical definition.

Go to 98.

50
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98

Here is a little bit of mathematical shorthand which will be useful in

this section.

Suppose a variable x has values lying in an interval with the following

properties:

1. The interval surrounds some number a.

2. The difference between x and a is less than another number B.

3. x does not take the particular value a. (We will see later why this

point is excluded.)

The above three statements can be summarized by the following:

I x - a I
> (This statement means x cannot have the value a.)

I x — a I < B (The magnitude ofthe difference between x and a is less

than B.)

These relations can be combined in the single statement:

< \x-a\ <B.

(If you need to review the symbols used here, see frame 20.)

The values of x which satisfy <
I
x - a

I
< B are indicated by the

interval along the x-axis shown in the figure.

Allowed values of x

(x = a excluded)

U- B >U B ->J
a — B a a + B

Go to 99.
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99

We begin our discussion of limits with an example. We are going to

work with the equationy = fix) = x 2
, as shown in the graph.P is the point

on the curve corresponding to x = 3, y = 9.

Let us concentrate on the behavior ofy for values of x in an interval

about x = 3. For reasons which we shall see shortly, it is important to

exclude the particular point of interest P, and to remind us of this, the

point is encircled on the curve.

We start by considering values ofy corresponding to values of jc in an
interval about x = 3, lying between x = 1 and x = 5. With the notation of

the last frame, this can be written as <
I
x - 3 1 < 2. This interval for x is

shown by line A in the figure. The corresponding interval for y is shown
by line A ' and includes points between y = 1 and y = 25, except y = 9.

A smaller interval for x is shown by lineB . Here <
I
x- 3 1 < 1 , and the

corresponding interval for y is 4 < y < 16, with y = 9 excluded.

The interval for x shown by the line C is given by < \x- 3 1 < 0.5. Write

the corresponding interval for y in the blank below, assuming y = 9 is

excluded.

In order to find the correct answer, go to 100.

100

The interval for y which corresponds to <
I
x - 3 I

< 0.5 is

6.25 < y < 12.25
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which you can check by substituting the values 2.5 and 3.5 for x iny = x 2

in order to find the values of y at either end point.

So far we have considered three successively smaller intervals of x
about* = 3 and the corresponding intervals ofy. Suppose we continue the
process. The drawing shows the ploty = x 2

for values ofx between 2.9 and
3.1. (This is an enlarged piece of the graph in frame 99. Over the short
distance shown the parabola looks practically straight.)

Three small intervals of x around x = 3 are shown along with the
corresponding interval in y. The table below shows the values of y,
corresponding to the boundaries of x at either end of the interval. (The
last entry is for an interval too small to show on the drawing.)

Interval
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101

We hope it is apparent from the discussion in the last two frames that

as we diminish the interval for x around x = 3, the values for y = x 2

cluster more and more closely abouty = 9. In fact, it appears that we can

make the values fory cluster as closely as we please abouty - 9 by merely

limiting x to a sufficiently small interval about x = 3. Because this is

true, we say that the limit ofx 2
, as x approaches 3, is 9, and we write this

lima:
2 = 9.

Let's put this in more general terms.

If a function f(x) is defined for values ofx about some fixed number a,

and if, as x is confined to smaller and smaller intervals about a, the

values of fix) cluster more and more closely about some specific number
L, the number L is called the limit of fix) as x approaches a. The state-

ment that "the limit of fix) as x approaches a is L" is customarily

abbreviated by

lira fix) = L.
x—»a

In the example at the top of the page fix) = x 2
, a = 3, and L = 9.

The important idea in the definition is that the intervals we use lie

around the point of interest a, but that the point itself is not included.

In fact, fia), the value ofthe function at a, may be entirely different from

\imfix), as we shall see.
x—»o

Go to 102.

102

You may be wondering why we have been giving such a complicated

discussion ofan apparently simple problem. Why bother with lim x 2 = 9

when it is obvious that x 2 = 9 for jc = 3?

The reason is that often the value of a function for a particular* = a is

not defined, whereas the limit as x approaches a is perfectly well defined.

For instance at 6 = the function—-— has the value jl, which is

meaningless. When we get to frame 110 we shall see that

,. sin d .hm

—

-z
— = 1.

9-0 V
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As another illustration consider

x 2 -l
fix) x-1 '

For* = 1, fil) = < _ )
- «» which is not defined. However we can divide

by x - 1 provided x is not equal to 1, and we obtain

rw x-1 x-1 x L -

Therefore, even though /"(I) is not defined,

lim fix) = lim(x + 1) = 2.
X—

1

x—\

Formal justification of these steps is given in Appendix A 2, along
with a number of rules for handling limits. There is no need to read the

appendix now unless you are really interested.

We could also have obtained the above result graphically by studying
the graph of the function in the neighborhood ofx = 1 as we did in frame
99.

Go to 103.

103

To see whether you have caught on, find the limit of the following

slightly more complicated functions by procedures similar to the above.

(You will probably have to work these out on paper. Both ofthem involve

a little algebraic manipulation.)

(a) lim
(1+ *)2 ~ 1 =[11x1-112]

*-*o x

(b) lim
1 ~ (1 + x)3 =[11x131-3]

x-»0 X

If right, go to 105.

Otherwise, go to 104.
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104—

Here are the solutions to the problems in 103:

/ x 1- (1 +X) 2 -1 .. (1 + 2X + X 2
) - 1

a) hm = lira
x— X x—0 X

= lim
2* + x = lim(2 + x)= lim 2 + lim x = 2.

x—0 X x—0 x—0 x—0

(b) lin,
i-m-*>3

= nmLzil±Ml±Mi±M
x—0 X x—0 X

= lim
l-(l + 3, + 3^ + x3)

lim _ 3x _ x2)

.2 j. J3\

x—0

= lim(-3) +lim(-3x) + lim(-x 2
) = -3.

x—0 x- x—0

Again, if you would like justification of the steps used in these solu-

tions, see Appendix A2.

Go to 105.

105

So far we have discussed limits using expressions such as "confined to

a smaller and smaller interval" and "clustering more and more closely."

These expressions convey the intuitive meaning of a limit, but they are

not precise mathematical statements. Now we are ready for a precise

definition of a limit. [Since it is an almost universal custom, in the

definition ofa limit we will use the Greek letters 5 (delta) and e (epsilon). ]

Definition of a Limit

Let fix) be defined for all x in an interval about x = a, but not

necessarily at x - a. If there is a number L such that to each positive

number e there corresponds a positive number 5 such that

\ f(x)-L \
< e provided <

I
x - a I

< 5,

we say that L is the limit of fix) as x approaches a, and write

lim fix) = L.
x—»a

To see how to apply this definition,

Go to 106.

Answers: (103) 2, -3
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106

The formal definition of a limit in frame 105 provides a clear basis for
settling a dispute as to whether the limit exists and is L. Suppose we
assert that lim fix) = L, and an opponent disagrees. As a first step, we tell

her to pick a positive number e, as small as she pleases, say 0.001, or ifshe
wants to be difficult, 10_lo°. Our task is to find some other number 8, such
that for all x in the interval <

I x - a
I
< 8, the difference between fix)

andL is smaller than e. Ifwe can always do this, we win the argument

—

the limit exists and is L. These steps are illustrated for a particular
function in the drawings below.

Our opponent has chal-

lenged us to find a 8 to

fit this e.

Here is one choice of 5.

Obviously, for all values

of x in the interval
shown, fix) will satisfy

I fix) - L | < €.

It may be that our opponent can find an e such that we can never find a
8, no matter how small, that satisfies our requirement. In this case, she
wins and fix) does not have the limit L. (In frame 114 we will come to an
example of a function which does not have a limit.)

Go to 107.

107

In the examples we have studied so far, the function has been ex-
pressed by a single equation. However, this is not necessarily the case.

(continued)
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Here is an example to show this.

fix) =1 for * * 2,

fix) = 3 for x = 2.

(The symbol =£ means "not equal.")

A suggestive sketch of this peculiar function is shown. You should be

able to convince yourself that \\mfix) = 1, whereas fi2) = 3.

fix)

3-

2

-1 12 3 4 5 6

If you would like further explanation of this, go to 108.

Otherwise, go to 109.

108

For every value ofx except x = 2, the value of fix) = 1. Consequently,

fix) - 1 = for all x except x = 2. Since is less than the smallest positive

number e that your opponent could select, it follows from the definition of

1, even though f(2) = 3.a limit that lim fix)
i-2

Go to 109.

109

Here is another function which has a well-defined limit at a point but

which can't be evaluated at that point: fix) = (1 + x)
1/J:.Thevalueof/'(x)at

x = is quite puzzling. However, it is possible to find limCl + x)
Vx

.

Most scientific calculators have the function y
x

. If you have such a

calculator, determine the values in the following table
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X
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You can see that this result is reasonable by graphing the function

^5— as shown above. If you have a calculator, explore for yourself val-

ues of^5— as approaches zero. If you try to evaluate the function
V

at = 0, most calculators will indicate an error. This is as it should be,

since the function is not defined at = 0. Nevertheless, its limit is well

defined and has the value 1.

Goto 111.

Ill

So far in most of our discussion of limits we have been careful to

exclude the actual value offix) at the point of interest, a. In fact, fid) does

not even need to be defined for the limit to exist (as in the last frame).

However, frequently fid) is defined. If this is so, and if in addition

Mm fix) = f(a),
x-»a

then the function is said to be continuous at a. To summarize, fill in the

blanks:

A function f is continuous at x = a if

1. fid) is

2. Mm fix) =
x—»a

Check your answers in frame 112.

112

Here are the correct answers: A function f is continuous at x = a if

1. f{a) is defined.

2. Mm fix) = fid).
x-*a

A more picturesque description of a continuous function is that it is a

function you can graph without lifting your pencil from the paper in the

region of interest.

Try to determine whether each ofthe following functions is continuous

at the point indicated.



i « ^ x 2 + 3

2. f(x) =

to,

At x = 3, /"(*) is [continuous
I
discontinuous]

1, x s* 0,

x < 0.

At x = 1, /"(*) is [continuous I discontinuous]

3. fix) =1*1.

At x = 0, /Xjc) is [continuous I discontinuous]

4. /•(*) =

At x = 0, /fa) is [continuous
I
discontinuous]

If you made any mistakes, or want more explanation, go to 113.

Otherwise, skip on to 114.

113

Here are the explanations of the problems in frame 112

x 2 + 3 12
1. At x = 3, /"(*) = Y = -jr. This is an undefined expression and,

therefore, the function is not continuous at x = 3.

2. Here is a plot of the function given.

f(x)

2 -

-3 -2 -1

(continued)
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3.

This function satisfies both conditions for continuity at * = 1, and is

thus continuous there. (It is, however, discontinuous at x = 0.)

Here is a plot of f(x) =1x1.

This function is continuous at x = since it satisfies all the formal

requirements.

sin x
4. As discussed in frame 110,- is not defined at x = 0. (It is,

however, continuous for all other values of x.)

Go to 114.

114

Before leaving the subject of limits, it is worth looking at some ex-

amples offunctions which somewhere have no limit. One such function is

that described in problem 2 ofthe last frame. The graph ofthe function is

shown in the figure. We can show that this function has no limit at x =

by following the procedure described in the definition of a limit.

fix)

2 -

-2 -1

For purposes of illustration, suppose we guess that lim/Xx) = 1. Next,
x-»0

our opponent chooses a value for e, say Va. Now, for
I
x -

I
< 8, where 8 is

any positive number,

Answers: (112) (1) discontinuous, (2) continuous, (3) continuous,

(4) discontinuous
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f|
1-1

I
= ifx>0,

I A*)- 1 \={
LI 0-1 I

= 1 ifx<0.

Therefore, for all negative values ofx in the interval, I fix) - 1 I
=1,

which is greater than e = V*. Thus 1 is not the limit. You should be able to

convince yourselfthat there is no numberL which satisfies the criterion

since fix) changes by 1 when x goes from negative to positive values.

Goto 115.

115

Here is another example of a function which has no limit at a point.

From the graph it is obvious that cot 6 has no limit as -» 0. Instead of

clustering more and more closely to any number, L, the value of the

function gets increasingly larger as 6—* in the direction shown by A,

and increasingly more negative as 6 —> in the direction shown by B.

cot*

3-
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Velocity

116

We have been getting a little abstract, so before we go on to differential

calculus, let's talk about something down to earth: motion. As a matter of

fact, Leibniz and Newton invented calculus because they were concerned

with problems of motion, so it is a good place to start. Besides, you

already know quite a bit about motion.

Go to 117.

117

Here is a warm-up problem. In this chapter the motion is always along

a straight line.

A train travels away at a velocity v mph (miles per hour). At t = 0, it is

distance S from us. (The subscript on S is to avoid confusion. S is a

particular distance and is a constant; S is a variable.) Write the equation

for the distance the train is from us S in terms oftime t. (Take the unit of t

to be hours.)

S =

Go to 118 for the answer to this.

118

If you wrote S = S + vt, you are correct. Go on to frame 119.

If your answer was not equivalent to the above, you should convince

yourselfthat this answer is correct. Note that it yields S = S when t = 0,

as required. The equation is that ofa straight line, and it might be a good

idea to review the section on linear functions, frames 23-39, before

continuing. When you are satisfied with this result,

Go to 119.
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119

Here is a plot of the positions at different times of a train going in a
straight line. Obviously, this represents a linear equation. Write the

equation for the position of this train (in miles) in terms of time (in

hours).

Find the velocity of the train from your equation.

Go to 120 for the correct answers.

120

Here are the answers to the questions in frame 119.

S = -60t + 300 miles,

v = -60 mph.

The velocity is negative because S decreases with increasing time. (Note
that the velocity along a straight line is positive or negative depending
on the direction of motion. The speed, which is the magnitude of the

velocity, is always positive.) Ifyou would like further discussion, review
frames 33 and 34.

Go to 121.



66 Differential Calculus

121

Here is another plot of position of a train traveling in a straight line.

S

The property ofthe line which represents the velocity ofthe train is the

of the line.

Go to 122 for the answer.

122

The property ofthe line which represents the velocity ofthe train is the

slope of the line.

If you wrote this, go right on to 123.

If you wrote anything else, or nothing at all, then you may have

forgotten what we reviewed back in frames 23-39. You should go over

that section once again (particularly frames 33 and 34) and think about

this problem before going on. At least convince yourself that the slope

really represents the velocity.

Go to 123.

123

On the next page are plots of the positions vs. time of six objects

moving along straight lines. Which plot corresponds to the object that

Has the greatest velocity forward? [a \ b \ c \ d \ e \ f]

Is moving backward most rapidly? [a \ b \ c \ d \ e \ f]

Is at rest? [a \ b \ c \ d \ e \ f]
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If all right, go to 125.

If any wrong, go to 124.

124

The velocity ofthe object is given by the slope ofthe plot of its distance

against time. Don't confuse the slope of a line with its location.

^ ;$f^~

All the above lines have the same
slope.

All these lines have differ-

ent slopes.

A positive slope means that distance is increasing with time, which

corresponds to a positive velocity. Likewise, a negative slope means that

distance is decreasing in time, which means the velocity is negative. If

you need to review the idea of slope, look at frames 25-27 before continu-

ing.

Which line in the figure above on the right has

Negative slope? [a I b I c I d]

Greatest positive slope? [a I 6 I c
I
d]

Go to 125.
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125

So far, the velocities we have considered have all been constant in

time. But what if the velocity changes?

Here is a plot of the position of a car which is traveling with varying

velocity along a straight line. In order to describe this motion, we in-

troduce the average velocity v (read as "v bar"), which is the ratio of the

net distance traveled to the time taken. For example, between the times

tx and t2 the car went a net distance S2 - Si, so (S2 - Si)/{t2 - tj was its

during the time.

Go to 126.

126

The answer to frame 125 is

(S2 - S^/^2 - *i) was its average velocity during the time.

(The single word "velocity" is not a correct answer.)

Go to 127.

127 —
In addition to defining the average velocity v algebraically,

S2 ~ §1
l2 - li

we can interpret v graphically. If we draw a straight line between the

points (ti, Si) and (t2 , S2), then the average velocity is simply the slope of

that line.

Answers: (123) d, b, e

(124) d, a
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Go to 128.

During which interval was the average velocity

Closest to 0? [112 13] s

Largest forward? [1
I
2 I 3]

Largest backward? [1
I
2

I 3]

129

If right, go to 130.

If wrong, go to 129.

Since you missed the last problem, we'll analyze it in detail.

Here are straight lines drawn through the points A, B, C. Line I has a

very small slope and corresponds to almost velocity. Line II has positive

slope, and line III has negative slope, corresponding to positive and
negative average velocities, respectively.

Go to 130.
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130

We now extend our idea of velocity in a very important manner:

instead ofasking "what is the average velocity between time tx and t2
?"

let us ask "what is the velocity at time txl" The velocity at a particular

time is called the instantaneous velocity. This is a new term, and we
will give it a precise definition shortly even though it may already be

somewhat familiar to you.

Go to 131.

131

We can give a graphical meaning to the idea ofinstantaneous velocity.

The average velocity is the slope of a straight line joining two points on

the curve, (tlt S x ) and (t2 , S2). To find the instantaneous velocity, we want
t2 to be very close to tv As we let point B on the curve approach point A
(i.e., as we consider intervals oftime, starting at t x which become shorter

and shorter), the slope ofthe linejoiningA and B approaches the slope of

the line which is labeled I. The instantaneous velocity is then the slope of

line /. In a sense, then, the straight line / has the same slope as the curve

at the point A. Line / is called a tangent to the curve.

Go to 132.

132

Here is where the idea of a limit becomes very important. Ifwe draw a

straight line through the given pointA on the curve and some other point

on the curve B, and then let B get closer and closer to A, the slope of the

straight line approaches a unique value and can be identified with the

slope ofthe curve at A. What we must do is consider the limit ofthe slope

of the line through A and B as B —* A.

Now, go to 133.

Answers: (128) 1, 2, 3
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133

We will now give a precise meaning to the intuitive idea of in-

stantaneous velocity as the slope of a curve at a point. We start by
considering the average velocity:

v = (S2 - Si)/(t2 - tY ) — the slope of the line connecting points 1 and 2.

O2.S2)

S2-S1

'1 H

As t2 -* t\
t
the average velocity approaches the instantaneous velocity,

that is, v -* v as t2 -* tlt or

v = lim
S2 - Si

h->h ^1 — h

Go to 134.

134

Since the ideas presented in the last few frames are very important,

let's summarize them.

If a point moves from S x to S2 during the time tx to t2 , then

(S2 - Si)/(*2 - h)

-, v.is the

If we consider the limit of the average velocity as the averaging time

goes to zero, the result is called the
,

v.

Now let's try to present these ideas in a neater form. Ifyou can, write a

formal definition of v in the blank space.

Go to frame 135 for the answers.
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135

The correct answers to frame 134 are the following:

If a point moves from S x to S2 during the time tx to t2 , then

(s2 - sjntt - h)

is the average velocity v.

If we consider the limit of the average velocity as the averaging time

goes to zero, the result is called the instantaneous velocity v.

.. S2 — S1
v = hm — —

.

«2 -'i h - ti

If you wrote this, congratulations! Go on to 136.

Ifyou wrote something different, go back to frame 133 and work your

way to this frame once more.

Then go on to 136.

136

The Greek capital A ("delta") is often used to indicate the change in a

variable. Thus, to make the notation more succinct, we can write AS =

S2 - Si, and Af = t2 - tv (AS is a single symbol read as "delta S"; it does

not mean A x S.) Although this notation may be new, it is worth the

effort to get used to it since it saves lots of writing.

(Si, h)
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With this notation, our definition of instantaneous velocity is

Go to 137 to find the correct answer.

137 .

If you wrote

,. as
v = hm 77,

4*-.o At

you are really catching on. Go ahead to frame 138.
If you missed this, study frames 134-136 before going to 138.

138

Now we are going to calculate an instantaneous velocity by analyzing
an example step by step. Later on we will find shortcuts for doing this.

Suppose that we are given the following expression relating position
and time:

S = fit) = kt
2

(k is a constant).

The goal is to find AS = fit + A t) - fit), for any A t, and then to evaluate
the limit AS/At as A* -> 0.

Here are the steps

AS= fit + At) -fit) = kit + At) 2 - kt 2

= kit
2 + 2t At + iAt)

2
] - kt 2

= k[2tAt + iAt)
2
],

AS_ k[2tAt + jAt)
2
l ?l . , , . .

At At
~ 2kt + k A ''

AS
v= lim-r-=lim(2to + kAt) = 2kt.

A simpler problem for you to try is in the next frame.

Go to 139.
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139

Suppose we are given thatS = f(t) = v t + S . The problem is to find the

instantaneous velocity from our definition.

In time A* the point moves distance AS.

AS =

.. AS
v = hm -T-r =

AHOAf

Write in the answers and go to 140.

140

If you wrote

and

AS = v At

.. AS
v= lim-7-=i;o,

at-.o At

you are correct and can skip on to frame 142.

If you wrote something different, study the detailed explanation in

frame 141.

141

Here is the correct procedure. Since S = fit) = v t + S
,

^s=f{t + At)-f(t)

= v (t + At) + S -(v t + S )

= vQ At,

.. AS .. vQ At ..

hm -7-7 = hm ; . = hm v = v .

Af-»0Ar Afx— At Af-»0

The instantaneous velocity and the average velocity are the same in

this case, since the velocity is a constant, v .

Go to frame 142.
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142 —

Here is a problem for you to work out. Suppose the position ofan object

is given by

S = f(t) = kt
2 + lt + S ,

where k, I, and S are constants. Find v.

.. AS
v = hm-T— =

M->oat

To check your answer, go to 143.

143

The answer is

v = 2kt + I.

If you obtained this result, go on to frame 146. Otherwise,

Go to 144.

144

Here is the solution to the problem in frame 142.

f(t) = kt
2 + lt + So,

fit + At) = kit + At)
2 + lit + At) + S

= k[t
2 + 2t At + iAt)

2
] + lit + At) + S ,

AS = fit+ At) -fit) = k[2tAt + iAt)
2
] + IAt,

,= lim^=lim(M2^t(Ai)!l±iAl
At—oAr At-»ol At

= lim[*(2* + At) + /] = 2kt + I.
At-»0

(continued)
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Now try this problem:

If S = At3 , where A is a constant, find v.

Answer:

To check your solution, go to 145.

145

Here is the answer: v = 3At 2
. Go right on to frame 146 unless you

would like to see the solution, in which case continue here.

S^At3
,

AS = A{t + At)
3 -At3

= A[<3 + 3t
2 At + 3t(At)

2 + {At)
3
] - At3

= 3At 2 At + 3At(At) 2 + A(At)3
,

v= lim^f = lim[3A* 2 + 3At At + A(At) 2
] = 3At 2

.

it—oat Ar—

o

Go to frame 146.

Derivatives

146

In this section we will generalize our results on velocity. This will lead

us to the idea of the derivative ofa function, which is at the very heart of

differential calculus.

Go to 147.

147

Fill in the blanks below.

When we write S = fit), we are stating that position depends on time.
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Here position is the dependent variable and time is the

variable.

The velocity is the rate of change of position with respect to time. By
this we mean that velocity is (give the formal definition again):

Go to frame 148 for the correct answers.

148

In the last frame you should have written

. . . time is the independent variable,

and

.. AS
v = lim -r—

A<-»0 At

In any case, go on to 149.

149

Let us consider any continuous function defined by, say,y = fix). Nowy
is our dependent variable, and x is our independent variable. If we ask
"At what rate does y change as x changes?", we can find the answer by
taking the following limit:

Ay
Rate of change of y with respect to x = lim -r*-.

ax-o Ax

Go to 150.

150

A v
You can give a geometrical meaning to lim t^ , where y = fix). To do

Aj^-»o Ax
Ay

so, fill in the blanks. Geometrically, lim — can be found by drawing a

straight line through the point ix, y) and the point ( , )

(continued)
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Ay A v
as shown. The slope of that line is given by 7* , and lim r* is the

ax ii- ax
of the tangent to the curve at (x, y).

y

> + 4y

151

Go to 151.

The correct insertions for frame 150 are

(x + ax, y + ay),

Ay 1.lim r* is the slope of the tangent curve at (jc, y). For brevity, the slope of
Ai-> ax
the tangent to a curve is usually called the slope of the curve.

(If you would like to see a discussion of this, review frame 131 before

continuing.)

Go to 152.

152

Ay
Another way of writing -^ is

x<i - x x

f{x2) - fiXi)

X2 — X\

If the notation used here still seems unfamiliar, review frame 136
before proceeding.

Goto 153.
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153

Let's review just once more.

If we want to know how v changes as x changes, we find out by
calculating the following limit:

Fill in the blank and go on to 154.

154

The correct answer to frame 153 is

bx-o Ax
lim

^2-Vi
*2-»*i x2 ~ x l

If you were correct go on to 155.

If you missed this, go back to 149.

155

A?;.
Because the quantity lim j-

8* is so useful, we give it a special name and
Ax-»0 AX

a special symbol.

Ay
lim j* is called the derivative of y with respect to x, and it is often
4^0 Ax ,

written with the symbol -f.

1r = K* $*.
ax Ax->o Ax

where Ay = y(x + Ax) - y(x).

cty
Once again: -4- is the of with respect to

Go to 156 for the correct answer.
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156 '

The correct answer is

j- is the derivative of y with respect to x.

This symbol is read as "dee y by dee x." The derivative is frequently

written in another form:

dy _ ,

dx~ y '

dy
(The symbol y

1

is read as "y prime.") y' and -j- mean the same thing:

y = * = lim
J*?ax a*—o Ax

(Another symbol sometimes used for the derivative operator isD. Thus
Dy = y'. However, we will not use the "D" symbol.)

Having two separate symbols for the derivative may look confusing at

first, but they should both quickly become familiar. Each has its advan-
dy

tages. The symbol -j- leaves no doubt that the independent variable is x,

whereas y
1 might be ambiguous—y could be a function of some other

variable, z. [To avoid such a confusion, the "prime" form is sometimes
dy

written asy ' (x).] On the other hand, the symbol -4- can be cumbersome to

dy
write. More seriously, in the form -j- the derivative looks like the simple

ratio of two quantities, dy and dx, which it is not.

We can apply the idea ofa derivative to the motion ofvelocity which we
discussed earlier. Velocity is the rate ofchange ofposition with respect to

time, so velocity is the derivative of position with respect to time.

Go to 157.

157

Let's state the definition of a derivative using different variables.

Suppose z is some independent variable, and q depends on z. Then the

derivative of q with respect to z is

dq _
dz

(Give formal definition.)

For the right answer, go to 158.
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158

Your answer should have been

P - lim ¥dz az—o Az

If so, go to 159.

If not, go back to frame 155 and try again.

159

The symbol -J- can be thought of as a derivative operator -r-, operating

on the function f
If fix) = x3 + 3, then the derivative can be written in any of the

following forms:

df_dix^3)_d
--rKx + 6).

Similarly,

dx dx dx

d(d 2
sin 6) _ d ,,

dd dd
= 32(0" sin 6).

(Here, 6 is merely another variable.)

Thus j- ( ) means "differentiate with respect to x" whatever func-

tion fix) happens to be in the parentheses. In complete detail the symbol
means that one should obtain an expression for

Af=f(x + Ax) -fix),

and then use it to evaluate

dx ai-o Ax

However, as we shall see, one hardly ever goes through this formal
limiting procedure to find a derivative. There are lots of shortcuts.

Go to 160.
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Graphs of Functions and Their Derivatives

160

We have just learned the formal definition of a derivative. Graphical-

ly, the derivative of a function f{x) at some value ofx is equivalent to the

slope of a straight line which is tangent to the graph of the function at

that point. Our chief concern in the rest of this chapter will be to find

methods for evaluating derivatives of different functions. However, in

doing this it is very helpful to have some sort of intuitive idea ofhow the

derivative behaves, and we can obtain this by looking at the graph ofthe

function. If the graph has a steep positive slope, the derivative is large

and positive. If the graph has a slight slope downward, the derivative is

small and negative. In this section we will get some practice putting to

use such qualitative ideas as these, and in the following sections we will

learn how to obtain derivatives precisely.

Go to 161.

161

Here is a plot ofthe simple function y = x. At the top ofthe next page we
dy

have plotted y '
= -jr. Since the slope ofy is positive and constant, y ' is a

positive constant.

The graph indicates that -fix) = 1. Can you prove this?
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-3 -2 -1

A h-

1

1 2 3

Go to 162.

162

To prove that -r- (x) - 1, lety(x) = x. Then

Hence,

Ay = y(x + Ax) - y(x) = x + A* - x = Ax.

dy .. Ay .. Ax ,
-j- = hm x^ = hm — = 1.
ax tx^o ax &x->o ax

Here is a plot ofy = |xl. (If you have forgotten the definition of
I x |,

see frame 20.) On the coordinates below, sketch y'.

3-2-1
-1

1 2 3

-2

For the correct answer, go to 163.
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163

Here are sketches ofy = 1x1 andy' . Ifyou drew this correctly, go on to

164. If you made a mistake or want further explanation, continue here.

3-2-1 o

-l

-2

As you can see from the graph, y =
\ x I

= x for x > 0. So for x > the

problem is identical to that in frame 161, andy' = 1. However, for x < 0,

the slope of I x I
is negative and is easily seen to be -1. At x = 0, the slope

is undefined, for it has the value +1 if we approach along the positive

x-axis and has the value -1 if we approach along the negative x-axis.

Therefore, -r- (I x I) is discontinuous at x = 0. (The function x is con-
ax

tinuous at this point, but the break in its slope at x = causes a

discontinuity in the derivative.)

Go to 164.
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164

Here is the graph of a function y = f(x). Sketch its derivative in the

space provided below. (The sketch does not need to be exact^-just show

the general features of y' .)

-3 -2 -1

-l

-2

See 165 for the correct answer.
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165

Here is the function and its derivative. Ifyour sketch ofy ' is similar to

that shown, go to 166. Otherwise, read on.



Graphs of Functions and Their Derivatives 87

166

Let's look at the behavior ofy ' graphically for one more function. Here
the plot ofy and x is a semicircle. In the space below, make a rough sketch
ofy 1

for the interval illustrated.

-l

-l

Go to 167 for the correct answer.
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167
"

Here are the plots of y and y\ Read on if you would like further

discussion of this. Otherwise, go to 168.

The slope of the semicircle does not behave nicely at the extreme

values ofx, so let's start by looking at x = 0. Ifwe draw a line tangent to

the curve at x = 0, it will be parallel to the x-axis, so the curve has slope.

Thus, y = at x = 0. For x > 0, a line tangent to the curve has negative

slope, so y' < 0. As x approaches 1 the tangent becomes increasingly

steep, and y ' becomes increasingly negative. In fact, as x -* 1, y '

—* - ».

From this discussion it should be easy to find y
1 for x < 0.

Goto 168.



Graphs of Functions and Their Derivatives 89

168

Ifyou understand all the examples in this section, skip on to the next

section. However, if you would like a little more practice, try sketching

the derivatives for each function shown. The correct sketches are given

in frame 169 without any discussion.
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169

Here are the solutions to the problems in frame 168.
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Differentiation

170

We have accomplished a great deal so far in this chapter. In fact, all the

really important new ideas involved in differential calculus have been
introduced—limits, slopes of curves, and derivatives—and you are

equipped in principle to solve a wide variety ofproblems. However, using

the fundamental definition to calculate the derivative in each problem as

it comes along would be very time-consuming. It would also be a great

waste oftime since there are numerous rules and tricks for differentiat-

ing apparently complicated functions in a few short steps. You will learn

the most important of these rules in the following sections. You will also

learn how to differentiate a few functions which occur so often that it is

useful to know and remember their derivatives. These include a few of

the trigonometric functions, logarithms, and exponentials. The remain-
ing sections cover some special topics, as well as applications of differen-

tial calculus to some problems. By the end of this chapter you should be
able to use differential calculus for many applications. Well, let's get

going!

On to 171.

171 —
Can you find the derivative of the following simple function?

y = a (a is a constant).

y
1 = [1 | x I a I I none of these]

If right, goto 173.

If wrong, go to 172.

172

To find y', we go back to the definition -y- = lim 7*. If y = a,
ax a^o Ax J

Ay _ fix + Ax)-fix) = a - a ^
Ax Ax Ax ~

(Remember that the meaning of fix + Ax) is /"evaluated at x + Ax.)

(continued)
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lim 7^ = lim = 0.
Aj—0 Ax Ax—0

Since y* = 0, the plot ofy in terms of* has slope. (Figure 4 in frame 32
shows this graphically.)

Go to 173.

173

You have just seen that the derivative of a constant is 0.

Now, try to find the derivative of this function:

y = ax (a = constant).

-f- = [1 I x I a I I ax I none of these]
ax

If right, skip to 175.

If wrong, go to 174.

174

Here is the correct procedure:

y(x) = ax,

y(x + Ax) - y(x) = a(x + Ax) - ax = (ax + a Ax) - ax = a Ax.

Therefore

dy ,- Ay ,. a Ax
-f- = lim -;r- = lim —7— = a.
ax a»—oAx Ax-o Ax

Now try to find the derivative of the function f = -x.

f = [1 I I a I -1 I -*]

If correct, go to 175. If wrong, note that this problem is just a special

case of 173. Try again and then

Go to 175.

Answer: (171)



Differentiation 93

175

Now we are going to find the derivative of a quadratic function.

Suppose

y = fix) = x 2
.

What is y?
You should be able to work this out from the definition of the de-

rivative. Choose the correct answer:

y = [1 I
x

I I x
2

I
2x]

If right, go to 177.

Otherwise, go to 176.

176

Let us recall the definition of the derivative

,
dy .. y(x + Ax)-y(x)y~r =

-im 1
——

•

ax a*—o Ax

In this case, y(x + Ax) = (x + Ax) 2 = x 2 + 2x Ax + (Ax)
2

, so

,. y(x + Ax)-y(x) ,. [x
2 + 2xAx + (Ax) 2]-x 2

hm 1 = hm -

Ax— AX Ai—

o

Ax

,. 2x Ax + (Ax) 2

= hm t
—

Ax-0 Ax

= Hm (2x + Ax) = 2x,
Ax-»0

y=# = 2x.J dx

Go to 177.
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177

We have found the result that -r- (x
2
) = 2x. To illustrate this, a graph of

y = x 2
is drawn in the figure. Since the slope of the curve at a point is

simply the derivative at that point, each of the straight lines tangent to

the curve has a slope equal to the derivative evaluated at the point of

tangency.

— l»s -l -H fc H 1 1*4

\ (a)

Slope =

The tangent through the origin has a slope of(2)(0) = 0. Line (6) passes

through the pointx = V2, and has slope (2)0/2) = 1. Line (c) passes through

the point x = -1, and has slope (2)(-l) = -2.

Go to 178.

178

Here is a problem which summarizes the results we have had so far in

this section (with a tiny bit of new material).

If/"=3x 2 + 7* + 2,

Find/"'.

Answer: f =

See frame 179 for the correct answer.

Answers: (173) a (174) - 1 (175) 2x
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179

Uf = 3x 2 + 7x + 2, then p = 6x + 7.

Congratulations ifyou got this answer. Go on to 180. Otherwise, read
below.

After you have finished this chapter, you will know several shortcuts

for evaluating this derivative. However, right now we will use the basic

definition:

/"(*) = 3jc
2 + Ix + 2,

fix + Ax) = 3[x
2 + 2xAx + (Ax) 2

] + 7(jc + Ax) + 2,

bf=f(x + Ax) -fix) = 6x Ax + 3 Ax 2 + 7 Ax,

so

df .. / 6xAx + 3Ax 2 + 7Ax \ .. ,c ^ . . x „-t-= hm t = hm (6x + 3 Ax + 7)ax br+o\ Ax / 4,-o

Go to 180.

180

Now that we have found the derivatives ofx and x 2
, our next step is to

find the derivative of x", where n is any number. We will state the rule

here, but you can look in Appendix A4 ifyou would like to see how it is

derived.

The result is

dxn

dx

This important result holds for all values of n: positive, negative, inte-

gral, fractional, irrational, etc. Note that our previous result, -r- (x
2
)
=

2x, is the particular case of this when n = 2.

[Also, j- (x) = 1 is the particular case when n = 1.]

Go to 181.
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181-

Now for a few applications.

Find -f- for each of the following functions.
dx

y = x3
t

<t = [3*3 | 3jc
2

| 2*3 |
j.2]

J dx

fl = [_ 7*-6
I
lx~7 |

_ 7*-8 | _&r 7
]

ax

v _ 1 dy _ ,2, 2

_7
y = * ,

If all these were correct, go to 183.

If you made any errors, go to 182.

182

The solutions to these problems depend directly on the rule in frame

180. Here are the details.

We use our general rule: ->-(*") = nx""1
.

y = xs ; in this case n = 3, so

fHx3
) = 3*3

- 1 = 3x'
ax

y = x~
7

; here n = -7, so

£(*-?) = _7x-7-l = _7x-8.
ax

y = 1/ac
2 = jc , here n - -2, so

« (r)
*"-**-?

Now try these problems:

y = i * - ex 4 1
-i

i -i i aJ x dx xxx*

If right, go on to 183.

If wrong, go back to 180 and continue from there.
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Here is another application.

If y = x 1 ' 2
, find J.

dy

dx

The answer is. [x
1/2

I ~x v2
I
„x I none of these].

If right, goto 185.

If wrong, go to 184.

184

The rule —r~ = nxn l
is true for any value of n.

In this case, n = =,

dx
KX ]

2
X

2
X

•

Try this problem:

^ (x
2/3

) = tx-
1/3

I gjc
23

I |x-
1/3

I X
5

Go to 185.

Some Rules for Differentiation

185

In this section we are going to learn a number of shortcut rules for

differentiation without having to go all the way back to the definition of

the derivative each time. Some of these rules are derived here, while

others are derived in Appendix A.

For the rest of this section, we will let u(x) and v(x) stand for any two
variables that depend on x.

Go to 186.
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186

Our first rule will let us evaluate the derivative ofthe sum of u and v,

in terms of their derivatives. We will derive the rule here. Let

Then

v = u(x) + v(x).

dv 1
-f = lim [u(x + Ax) + v(x + Ax) - u(x) - u(x)] t-
dx ai—o A x

= lim [u(x + Ajc) - u(x)] t- + lim [v(x + Ax) - v(x)] t-
a*—o Ax Ax-^0 Ax

_ du dv

dx dx

Hence

d

,

. du dv
-J-(U + V) = -j- + -J-.ax dx dx

If you would like a rigorous justification of the manipulation of the

limits in the above proof, see Appendix A2.

Go to 187.

187^

Now let's put the above rule to use by computing the derivative of the

following function (you will also have to use some results from the last

section):

y = x4 + 8x3 .

dy _
dx

For the correct answer, go to frame 188.

Answers: (181) 3x 2
, -7x-

8
, -2/x

3
(182) -1/x 2

, x"

(183) \x-il2
(184) |x"1/3
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188

The correct answer to the question in frame 187 is

^-(x
4 + 8x3 ) - 4*3 + 24x 2

.

ax

Ifyou got this answer, go to frame 189. Otherwise, continue here to find

your mistake.

Our problem is to find the derivative of the sum of two functions. To
make use of the rule in frame 186 in the notation used there, suppose we
let u = x4 , v = 8x3 .

Then

£(u + v) = ^(x4 + 8x3
) = ^(x4

) + ^(8x3
).

You should be able to evaluate these two derivatives from the result of

the last section:

J^Ot
4
) = 4x3

, jW) = 24* 2
.

Hence, ^-{x
4 + 8x3 ) = 4x3 + 24* 2

.

ax

Go to 189.

189

Now that we can differentiate the sum of two variables, our next

task is to learn to differentiate the product, for instance, u(x) x v{x). We

want to express -r- (uv) in terms of -r- and -7-. The result, known as the

product rule, will be stated here. Look in Appendix A6 ifyou want to see

how it is derived.

Product rule

~r (uv) =
dx
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190—

Here is an example in which the product rule is used. Suppose

y = (x
5 + 7)(x

3 + 17x).

The problem is to find £. If we let u = x5 + 7, v = x3 + 17x,

then y = uv.

dy d . . dv
,

du
dx dx dx dx

Since ~r = 5jc
4 and -j- = 3x 2 + 17, our result is

dx dx

$ = (*
5 + 7)(3x

2 + 17) + (x
3 + 17x)(5x

4
).

ax

Note that it is usually considered good practice to simplify (collect

together terms in like powers of x) expressions such as this. However, to

save time in this chapter, you need not do so.

By using the product rule, we can derive in another way a result we

have already found: -z-(x
2
) = 2x. Ifwe let u = x and v = x, then the product

rule tells us that

d
, 2 x dx

,
dx

-5-(x ) = x-r + x-r = 2x.
dx dx dx

Go to 191.

191

Use the product rule to find the derivative -5- [(3x + 7)(4x
2 + 6x)].

Answer:

Go to 192 for the solution.
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192

The answer is

(3x + 7)(8x + 6) + {Ax
2 + 6jc)(3).

If you obtained this or an equivalent result, go on to 194. Otherwise,

read below.

The problem is to differentiate the product of 3x + 7 and 4x 2 + 6x.

Suppose we let u = 3x + 7 and v = 4x 2 + 6x. Then u' = 3, v' = 8x + 6.

Hence

4-(uv) = uv' + vu' = (3x + 7)(8x + 6) + (4x
2 + 6x)(3).

ax

Try this problem:

What is 4[(2x + 3)(x
5
)]?

ax

Answer:

Go to 193 for the correct solution.

193

£[(2x + 3)(x
5
)] = (2x + 3)(5x

4
) + (x

5
)(2)

ax

The method for obtaining this is like that shown in frame 192. You can

use the rule in frame 180 for differentiating xn in order to find -r(x
5
)

5x4 .

Go to 194.
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194 "

In frame 189 we learned the product rule: (uvV = uv' + vu'. Some-

times one needs to differentiate the quotient of two functions, u(x)/v{x).

Here is the rule. It will be proven later in this section, in frame 206.

Quotient rule

d lu\ vjduldx) - u(dv/dx) _ vu' - uv'

dx(v)
- P " v*

195

Go to 195.

Solve the following problem:

d( l + x

dx\ x 2

To see the correct answer, go to 196.

196

The answer to the problem in 195 is

dl l ±x\_ JL A_
dx\ x 2

If right, go to 198.

If wrong, you should go to 197 for help.
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197

du , dv
Let u = 1 + x, v = x 2

. Then -r- = 1, -r- = 2x.
dx dx

dx\ v I

;(f)-

viduldx) - u(dv/dx)

=-5—rd +x)_JL__2
dx\ v ) x4 x 2 x3

1

Go to 198.

198

In this frame we are going to learn a useful rule for finding the

derivative of a "function of a function." Suppose f is a variable that

depends on u, and u in turn depends on jc. Then /"also depends on x. The
following rule is proved in Appendix A7.

Chain rule

df _ df du
dx du dx'

This formula is called the chain rule because it links together de-

rivatives with related variables. It is one of the most frequently used

rules in differential calculus.

Here is an example: Suppose we want to differentiate fix) = (x + x 2
)
2

.

This is a complicated function. It looks much simpler ifwe let u = x + x 2
,

in which case f(x) = u 2
.

df _ df du _ d_ 2\du _ 9
du

dx du dx du dx dx'

We now substitute the value u = x + x 2
, and -3- = 1 + 2x, to obtain

dx

¥ = 2(x + x 2
)(l + 2x).

dx

(You can check that the chain rule gives the right answer in this case

by multiplying out the expression for f and then differentiating it. You

will find that the answer is equivalent to -J- found above.)

(continued)
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Caution: The chain rule would be a simple identity if-p and -3- could

be treated as ratios ofindependent quantities df, du, dx. However, this is

not the case; one cannot cancel du's in the numerator and denominator.

(Nevertheless, this fiction makes a very handy way to remember the

chain rule!)

Go to 199.

199

Here are a few more examples of the use of the chain rule.

1. Find^(VTTp).
at

Suppose we let w = Vl + t
2

, and u = 1 + t
2

, so that w = Vu. Then

dw dw du 1

dt du dt 2Vu
(20

1 1
-2t

<

2 VI + t 2 VI + t 2
"

Here we have used t as a variable, but of course it makes no difference

what we call the variables.

2. Let. =(^+ i)"
3

; n„d^.

This problem can be simplified by lettingp = q
3 + llq and v = p

-3
. With

these symbols the chain rule is

dv_ = dv_d£ = A dp= _ 3 4(3 2__L
dq dp dq dq \ q

2

=-3K +
t) \

3q -P
The following example will not be explained, since you should be able

to work it by inspection.

Go to 200.
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200

Now try the following problem:

Which expression correctly gives

-^-(2* + 7* 2)" 2?
dx

(a) -2(2 + 14*)" 3

(b) -2(2 + 14*)~ 2
(2* + 7* 2

)

(c) (2* + 7x 2)" 3(2 + 14jc)

(d) -2(2* + 7* 2)~ 3(2 + 14*)

The correct answer is [a I b I c
I d ]

If right, go to 203.

Otherwise, go to 201.

201

Here is how to work the problem in 200. Suppose we let w = u 2 and
u = 2x + 7*

2
. Then

Hence

X = 2 + 14*.
ax

dx du dx du dx

.3 dU _ . n„2\-3r= -2ur 6
^P = -2(2* + 7* zr d

(2 + 14*).
ax

Try this problem:

Find j-, where w = 12q
4 + Iq, and q = s

2 + 4.

ds

For the solution, go to 202.
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202 "

The problem in frame 201 can be solved by using the chain rule:

dw _ dw dq

ds dq ds

We are given that w = 12g
4 + Iq and q = s

2 + 4, so

^ = 48<7
3 + 7 and * = 2s.

dq ds

Substituting these, we have

d-^= (489
3 + 7)(2s) = [48(s

2 + 4)
3 + 7](2s).

ds

Ifyou wrote this result, go on to 203. Ifyou made a mistake, you should

study the last few frames to make sure you understand the application of

the chain rule. Don't be confused by the names of variables.

Then go to 203.

203

The next problem is to find -j- j-j in terms of v and -p where v

depends on x. The answer can be found using the quotient rule, but since

we are going to use it to prove the quotient rule, don't use that rule here.

Instead, try the chain rule.

Which of the following answers correctly gives -r- (-)?

r 1 dv I l |

dx
|

dv
|

-,, ,

[—2~r I , ,

,

I ~r I -~r I none of these]
v dx dvldx dv dx

If right, go to 205.

If wrong, go to 204.

204

To find -j- (-], we apply the chain rule in the following way. Suppose we

. A . 1 _, df dfdv , .df d _, 1 d ll\ 1 dv
let f = - = v \ -j- = -j- — , but-/ = — v

l = —2, so — - = —2 —

.

v dx dv dx dv dv v* dx\vl v dx

Go to 205.

Answer: (200) d
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205

Now, by combining the result of the last frame with what you have
learned previously, you should be able to derive the expression for the

derivative of the quotient of two functions. This is an extremely impor-

tant relation. Try to work it out for yourself.

d iu\ . - du dv_,. d lu\ . „ du dv
Find j- - in terms of u, v, -=-, -=-.

ajc\u/ dx dx

d lud_lu\ _
dx\vj

To check your answer, go to 206.

206

You should have obtained the following quotient rule which was
presented without proof in frame 194, though possibly arranged dif-

ferently.

d I u\ uv' — vu'sL(jl)
dx\ v I

If you wrote this or an equivalent statement, go on to 207. Otherwise,

study the derivation below.

If we let p = -, then our derivative is that of the product of two

variables.

d_iu\ _ d_. ._ dp du
dx\v) dx dx dx'

Now -j- = 2p -y- =—ff -?-, as in frame 194, so
dx dv dx v dx

d j u

dx

I u\ __ u dv 1 du__ vjduldx) - ujdvldx)

\ v I v
2 dx v dx v

2

Go to 207.
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207

Before going on to new material, let's summarize all the rules for

differentiation we have used so far. Fill in the blanks, a and n are

constants, u and v are variables that depend on x, w depends on u, which

in turn depends on x.

-7- (a) = j- (u + v) =
dx dx

Go to 208.

208

Here are the correct answers. The frame in which the relation was

introduced is shown in parentheses.

£ta>-0. (172) |," + rt =l + ^ (18S)

|(«) = a. (174, £(-) = »| + »| (189>

-f(x
2
) = 2*.

ax

d/_K_\ _ vjduldx) - u(dv/dx)
(194)

(176) dxl u /

~
v
2

±W) = nx»-\ (180) ^ ["(" )]
=S^ (198)

If you would like some more practice on problems similar to those in

the last two sections, see review problems 34 through 38..

Go to 209.

1 dv

v^ dx
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Differentiating Trigonometric Functions

209

Trigonometric functions occur in so many applications that it is useful

to know their derivatives. For instance, we would like to know j^(sin 0).

By definition,

jz (sin 0) - lim
CIO A0—

sin(fl + Afl)-sin

A0

It is not at all obvious how to evaluate this expression, so let's take

another approach for a minute and try to guess geometrically what the

result should be by looking at a plot of sin 0.

Here is a plot of sin vs. over the interval «s $ s£ 2it. (8 is measured
in radians, but for reference, a few of the angles are shown in degrees.)

sir

1
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210

sir

1
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211

Here is the rule:

de
{smd) COS 0.

Congratulations if you guessed this result in the last frame! If you
arrived at some other result, study the drawings in frame 209 and
compare the second one with the graph of cos 8 shown below.

Formal proof that -r- (sin 8) cos 8 is given in Appendix A4. It is

important to realize that this relation is only true when angle is mea-
sured in radians— this is why the radian is such a useful unit.

Let's try to guess the result for -?- (cos 8) from a plot of cos 8.

Draw a sketch of -r (cos 8) in the space provided, and make a guess at

the result.

d— cos 8 = .
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212

Here are plots of cos d and -j- (cos 0). The result is -j- (cos 0) = -sin 0,

CO

1
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de
the quotient rule, frame 194.)

Using these results, find -jt (tan ®- (Hint: use tan = ^^^and apply
dtt cos u

i^ e) =

213

Go to 213.

Using the hints in frame 212 we have

de
y

d ,. _x d / sin 6 \—
a (tan 0) = -jz\ t

a0\ cos /

cos -T^sin 0) - sin 0-}-.(cos 0)
dd dd

cos
2

= sec
2

6.
cos

2 6+ sin
2
6 1

cos 2 cos 2

Now find the correct answer:

-7^(sec 0) = [sec tan 6 I -sec tan 6
I
sec 0]

U0

If right, go to 215.

If wrong, go to 214.
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214

Using the definition sec = —^-z, and the result in frame 204, we haveB cos

d
i * d

( 1 \
1— (sec 0) = — = — —

:

dd dd\coa 0/ cos'

d cos
2 dd

tan 6= "• 7~k sin = -
cos"

4
6 cos 6

= sec 8 tan 6.

(All three of these expressions are equally acceptable.)

Go to 215.

215

Choose the correct answer:

^(sin 0)
2 = [sin I

2 cos 6 I cos
2

| 2 sin cos 0]
dd

If right, go to 217.

If wrong, go to 216.

216—

You could have analyzed the problem as follows:

Suppose we let u(d) = sin 6. Then -r - cos 6, and

de
isind) =de u =

du
{u)

de

= 1u -j- = 2 sin cos 0.
U0

Where did you go wrong? Find your error and be sure you understand it.

Then

Go to 217.

Answers: (213) sec tan
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217

Which of the following is ^(cos 3
)?

[cos sin 3
I -3d 2

sin
3

I 3 cos
2 3 sin 3

I 3 cos
2

0]

If right, skip on to frame 221.

If wrong, go to frame 218.

218-

Did you forget how to use the chain rule to differentiate a function ofa

function? We can think of cos
s as a function of a function. Suppose we

write it this way:

Then

w = cos u, u = s
.

dw _ dw du
dd ~ du d0'

dw a3 du oa 2^=-sin« = -sin03
, Te

= 30,

J^(cos
3
) = -302

sin
3

.

Go to 219.

219

If a) (Greek letter omega) is a constant, which expression correctly

gives -77 (sin <ot)?

[cos (at I a) cos lot I sin wt I none of these]

If right, go to frame 221.

Otherwise, go to 220.
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220

To solve problem in 219, let w = sin u, u = cot,

dw dw du d , .-.

-sr = j

—

-rr = cos u X -rAcot) = co cos cot.

dt du dt dt

Go to frame 221.

221

Before you go on to the next section, let's state once more the important

relations we have introduced in this section:

-r-:(sin 8) = cos 8,

de
,(cos 8) = -sin 8.

There are two more functions which are so common that it is worth

knowing their derivatives by heart: logarithmic and exponential. To

learn about them,

Go to 222.

Differentiation of Logarithms and Exponentials

222

Our next task is to learn how to differentiate logarithms. If you feel

shaky about logarithms, review frames 75-95 ofChapter 1 before going

on to the next frame.

Go to 223.

Answers: (214) 2 sin 8 cos 8

(217) -302
sin 8*

(219) (o cos cot
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223

In this section we are going to work with natural logarithms, In x
loge x. Natural logarithms were defined in frame 94. The base e

2.71828. . . was discussed in frame 109.

Here is a table showing In x for a few values of x.

X
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225

Here is a plot ofIn x in terms ofx. Ifyour calculator provides In x, check

some of the points on this graph.

In x

You can find the qualitative features of -v- (In x) by looking at the

graph. For small values ofx the derivative is large, and for large values of

x the derivative is small. In the figure above tangents are shown at a few

points, and their slopes are listed in this table.

X
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226

Here is the formula for the derivative of a natural logarithm:

j-(ln x) = -.
ax x

If you did not guess this result, you can check that it agrees with the

numerical values in the table in frame 225.

The reason that e is so useful as a base for logarithms is that it leads to

such a simple expression. This relation is derived in Appendix A9. It is so

important that it is worth committing to memory.

Go to 227.

227

Skip on to frame 228 ifyou do not have a scientific calculator. Using a

calculator, you can numerically confirm that -j-Gn x) = -. The procedure

is to calculate value of [In (x + A) - In x]/A for successively smaller val-

ues of A. The result should approach l/x.

Try the following for x = 5, for instance, or any other value you may
wish to choose. For x = 5, In x = 1.6094 and In' x - Vs = 0.2.

A
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228

Try this problem: Which of the following gives -r-(ln * 2
)?

[2 1n*|-|-^| \\-\nx]
X X* X £ X

If right, go to 230.

Otherwise, go to 229.

229—

The solution of this problem is quite straightforward. We could make
use of the chain rule. However, let's solve it another way.

Since In * 2 = 2 In *,

^-(ln* 2
) = ^2 1n* = -.

ax ax x

You should be able to do this one:

-j-(ln*)
2 = [2 In * I |

—,
| none of these]

ax x In *

If right, go to 231.

Otherwise, go to 230.

230

£(ln*) 2 = 21n*£(ln*) = 2 In*

Go to 231.
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231

, v d In r
(a)

(b)

dr

d In 5z

dz

For the correct answers, go to 232.

232

The correct answers are

(a) -; (b) -.
r z

If you got both of these, you are doing fine, so you may skip ahead to

frame 234. If you missed either one,

Go to frame 233.

233

, x dlnr 1 - ,

,

,, , dlnx 1 ,.
(a) —j— = - for the same reason that —3 = -. It makes no dif-dr r dx x

ference whether the variable is called r or x.

(b) The simplest way to find -3- (In 5z) is to recall that In 5z = In 5 + In z.

Hence,

%- (In 5z) = ^- (In 5) + ^- (In z) = + - = -.
dz dz dz z z

Go to 234.
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234

Another function we would like to differentiate is

y = a* (a is a constant).

(Warning: Do not confuse <f with xf, where x is a variable and a is a

constant.)

We can differentiate a* by taking the natural logarithm:

In y = In a* = x In a.

Now differentiate both sides of this equation with respect to x:

- -f = In a,
y ax

-r- = y In a = a" In a.

Thus,

-7- (a*) = ax In a.
ax

Go to 235.

235

The preceding frame gave the result

da*

ax
= a* In a

A particularly simple but important case occurs when a = e. Since

In e = 1,

dex

ax

2 In*
Answers: (228) - (230)

x x



(a)

(b)
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With the above, can you write the values for the following?

dx

de~x

dx

See 236 for the correct answers.

236

The answers are

de *

(a) -
Sr = ce

c

and

... de x
_ x

(b) -s—«
•

Ifyou did both of these correctly, go to 237. Otherwise, continue here.

The result (a) is obtained by letting u = ex and following the usual

procedure for a function of a function (i.e., using the chain rule, frame
194). Thus

de** deu du u
-j— = j— -j- = e

u
c = ce .

dx du dx

The result (b) is a special case of (a) with c = -1.

Go to 237.
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237

Skip on to frame 238 if you do not have a scientific calculator.

You can confirm numerically that -j-(e*) = ? in the same way that you

confirmed ^-(ln x) = - in frame 227. Calculate the following for some
ax x

value of x, for instance, x = 10. See whether the last column approaches

e
10 = 22,026.46

A
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239

1
One way to find the derivative of -, is to use the chain rule.

Let u = In x. Then
ln x

Al-L-) = A(±.) = du±du= _ 1J^
dx\\nxj dx\ u J du dx u* x

*(lnx)'

240
Go to 240.

A number ofrelations have been used in this section and you may want
to give them a quick review before going on. Here is a list. The most
important ones are in boxes.

e = 2.71828. . .,

ln x = loge x,

ln (x) = 2.303. . . log10 x,

d n ^
1

-j- (In x) = -
ax x

y (a
x
) = ax ln a,

dx

dx

241
Go to 241.

We have learned how to differentiate the most useful common func-

tions. The rest of this chapter will be spent on some special topics related

to the use ofderivatives. However, you may want a little more practice in

differentiation before you go on. Ifso, see problems 34 through 58 on page
247. Whenever you are ready,

Go to 242.
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Higher-Order Derivatives

242

dy
Suppose y depends on x and we have obtained the derivative -f. Ifwe

dy
next differentiate -y- with respect to x, the result is called the second

** d 2
y

derivative of v with respect to x, and is written -r\.

Can you do the following problem?

If y = 2x3
, then £* = [6x

2
I 12* I I x

2
I
x]

If right, go to 245.

If wrong, go to 243.

243

Here's how to do the problem in 242.

y = 2x3 ,

-f = Qx'
dx

Try this one:

d 2
y _ d_(dy\d_<fi 2\_ 19

dx 2 dxXdxldx

y = x + -
J x

-r~2=\.—5 I
-

I
+-»

I
none of these]

ox x 2 x x3

If right, go to 245.

If wrong, go to 244.

Answer: (238) -= rs
x(ln x)
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244

Here is the solution to 243.

y = X +
?

*L-i 1
dx x 2 '

O_ W-2\_ 2

Go to 245.

245

An example of a second derivative with which you may already be

familiar is acceleration.

Velocity is the rate of change of position with respect to time.

dSV=
df

Acceleration a is the rate of change of velocity with respect to time.

Hence

dv
a =

df

It follows then that

_ dldS\_d 2S
a

dt\dt) dt
2

Go to 246.
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246

The position of a particle is given by

S = A sin a>t.

A and w (omega) are constants. Find the acceleration.

Answer: [0 I
Aw cos wt I

(Aw cos cot)
2

I -Aw 2
sin wt].

If right, go to 248.

If wrong, go to 247.

247

Acceleration = -r-x- = tj (A sin wt).
dt

2
dt

1

jo j

—J- = jt (A sin arf) = Aa> cos wt (see frame 219),
at at

d 2S d (dS\ d , A .* * 2 • *
-r-5T = —r\ —r \~ ~T (Aw cos wt) = - Aw sin wt.
dt

2 dt\dtl dt

Go to 248.

248

There is really nothing essentially new about a second derivative. In

fact, we can define derivatives of any order n, where n is a positive

dn
f

integer. Thus, -j-j; is the nth derivative of f with respect to x. Try this

problem:
d4
y

lff=x4,fmd ar£.

Answers: (242) 12jc (243) 4x3
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^£ = [*
16

I Ax* I I 64 I
4 x 3 x 2 x 1]

Go to 249.

249

^=mm*}))
5?"^-I* **•>-£= -7^3 (4jc

3
) = -7-3(4 x 3x 2

) =t(4x3x2jc)

= 4x3x2x1.

We can easily generalize this result:

dn
KX')j3t(*") = n x (n - 1) x (n - 2) x • • • x 1

[n\ is called n factorial and is n x (n - 1) x (n - 2) x • • • x 1.]

For more practice on higher-order derivatives, see problems 59
through 63 on page 248.

Go on to 250.

Maxima and Minima

250

Now that we know how to differentiate simple functions, let's put our

knowledge to use. Suppose we want to find the value ofx and y at which

y = fix)

has a minimum or a maximum value in some given region. By the end of

this section we will know how to solve this problem.

Go to 251.
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251

Here is the graph ofa function. At which ofthe points indicated does y
have a minimum value in the domain plotted?

[A I B I C I D I A and B I C and D]

If correct, go to 253.

If wrong, go to 252.

252

The minimum value of y is at point C only, since y has its smallest

value at point C, at least for the domain of x plotted.

Answers: (246) -Aa>2
sin cot

(248) 4x3x2x1
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AtA and B , y has the value 0, but this has nothing to do with whether

or not it has a minimum value there.

Point D is a maximum value of v.

Go to 253.

253

We have shown that point C corresponds to a minimum value ofy, at

least insofar as nearby values are concerned, and that D corresponds

similarly to a maximum value.

There is an interesting relation between the points of maximum or

minimum values ofy and the value of the derivative at those points. To
help see this, sketch a plot ofthe derivative of the function shown, using

the space provided.

To check your sketch,

Go to 254.
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254

If you did not obtain a sketch substantially like this, review frames

160 to 169 before continuing.

This simple example should be enough to convince you that iffix) has a

maximum or a minimum for some value ofx within a given interval, then

its derivative /"' is zero for that x.

One way to tell whether it is a maximum or a minimum is to plot a few

neighboring points. However, there is an even simpler method, as we
shall soon see.

Go to 255.

Answer: (251) C
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255

Test yourself with this problem:

Find the value of x for which the following has a minimum value.

fix) = x 2 + 6x.

[-61-3101+31 none of these]

If right, go to 258.

If wrong, go to 256.

256

The problem is solved as follows:

The maximum or minimum occurs where x satisfies /"' = 0.

fix) = x 2 + 6x, f' = 2x + 6.

Thus the equation for the value of x at the maximum or minimum is

2x + 6 = or x = -3.

Here is another problem:

For which values of x does the following fix) have a maximum or

minimum value?

fix) = 8x + -.
x

[\ I -\ I
-4

I 2 and -4
I \ and -\]

If you were right, go to 258.

If you did not get the correct answer, go to 257.
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257

The problem in frame 256 can be solved as follows:

At the position of maximum or minimum, f = 0. Since

fix) = 8x + -,
x

The desired points are solutions of

8--%=
x*

r-«-?.

2 _ * _ *

* " 8
~ 4"

Thus at x = + Vfc and x = - V2, /*(*) has a maximum or a minimum value.

A plot of f(x) is shown in the figure, and, as you can see, x = -V2 yields a

maximum, and x = +V2 yields a minimum.

Incidentally, as you can see from the drawing, the minimum falls

above the maximum. This should not be paradoxical, since we are talk-

ing about local minima or maxima—that is, the minimum or maximum
value of a function in some small region.

Go to 258.

258

We mentioned earlier that there is a simple method for finding

whether fix) has a maximum or a minimum value whenf = 0. Let's find

the method by drawing a few graphs.

Answers: (255) -3 (256) Viand-%
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Below are graphs of two functions. On the left, fix) has a maximum
value in the region shown. On the right, g(x) has a minimum value. In the

spaces provided, draw rough sketches of the derivatives off(x) and g(x).

Now, let's repeat the process again. Make a rough sketch ofthe second

derivative of each function (i.e., sketch the derivatives of the new func-

tions you have just drawn).

f" g"

Perhaps from these sketches you can guess how to tell whether the
function has a maximum or a minimum value when its derivative is 0.

Whether you can or not,

Go to 259.
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259

The sketches should look approximately like this.

f 8

By studying these sketches, it should become apparent that wherever

P = 0,

fix) has a maximum value if f" < 0,

and fix) has a minimum value if f" > 0.

(If/"" = 0, this test is not helpful and we have to look further.)

Ifyou are not convinced yet, go back and sketch the second derivatives

of any of the functions shown in frames 164, 166, or 168 [(c) or (d)]. This

should convince you that the rule is reasonable. Wheneveryou are ready,

Go to 260.
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260

Here is one last problem to try before we go on to another subject.

Consider fix) = e . Find the value of* for which fix) has a maximum or

minimum value, and determine which it is.

Answer:

To check your answer, go to 261.

261

Let's solve the problem: fix) = e
x

. Using the chain rule, we find

P = -2xe~x
\

Maximum or minimum occurs at x given by

-2xe~*
2

= or x = 0.

Now we use the product rule (frame 189) to get

f« = _2<r*
2

+ 4jcV*
2

= (-2 + 4x2)e"<

Atx = 0,f" =(-2 + 4x0)x 1 = -2. Since f" is negative wherep =0,at
x = 0, fix) has a maximum value there.

A word of caution—in evaluating a derivative, say f at some value of

x, x = a, you must always first differentiate fix) and then substitute x = a.

If you reverse the procedure and first evaluate fia) and then try to

differentiate it, the result will simply be since fia) is a constant. Similar

care must be taken with higher-order derivatives.

Go on to 262.
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Differentials

262

dy
So far we have denoted the derivative by the symboly ' or -jr. Although

A v dy
either symbol stands for lim -^ , the method of writing -f- suggests that

Ax—0 &X CLX

the derivative might be regarded as the ratio oftwo quantities, dy and dx.

This turns out to be the case. The new quantities which we now introduce

are called differentials, and they are defined in the next frame.

Go on to 266.

263

Suppose that x is an independent variable, and thaty = fix). Then the

differential dx ofjc is defined as equal to any increment, x2-x1( where x x is

the point ofinterest. The differential dx can be positive or negative, large

or small, as we please. We see that dx, like x, can be regarded as an
independent variable. The differential dy is defined by the following

rule:

dy = y' dx,

where y
1

is the derivative of y with respect to x.

Go to 264.

264

Ay
Although the meaning of the derivative y ' is lim r* , we can see from

the preceding frame that it can now be interpreted as the ratio of the

differentials dy and dx, where dx is any increment ofx and dy is defined

by the rule dy = y
1 dx.

Go to 265.



Differentials 139

265

It is important not to confuse dy with A v. As was pointed out in frame

136, Ay stands for y2 - yi = f(x2 ) - /\*i)> where x2 and x x are two given

values ofx. Both dx and Ajc (=x2 -*i) are arbitrary intervals, dx is called

a differential ofx, and Ax is called an increment ofx, but their meanings
are similar here.

,y-axis

The diagram should show that dy and Ay are different quantities.

Here we have set dx = Ax. The differential dy is then y' dx, while the

increment Ay is given by y2 -y\. It is clear in this case that dy is not the

same as Ay.

Go to 266.

266
y-axis

dx

Although dy and Ay are different, you can see from the figure that for

sufficiently small dx (with dx = Ax) dy is very close to Ay. We can write

this symbolically as

lim 4-1.
<k=&r-o Ay

Hence, if we intend to take the limit where dx—(), dy may be sub-

stituted for Ay. Furthermore, even ifwe don't take the limit, dy is almost
the same as Ay, provided dx is sufficiently small. We, therefore, often use
dy and Ay interchangeably when it is understood that the limit will be
taken or that the result may be an approximation.

Go to frame 267.
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267 "

We can rewrite in differential form the various expressions for de-

rivatives given earlier. Thus, if y = xn ,

dy = d(xn ) = ^(jc") dx = nxn
-1

dx.

Find the following:

d(sin x) = [-sin x dx I
-sin x I -cos x dx I cos x dx]

dx
d(e

x
) = [xe* dx I dx I

e* dx I

*=]
er

If you missed any of these go to 268.

Otherwise, go to 269.

268

Here are the solutions to the problems in frame 267. The number ofthe

frame in which each derivative is discussed is shown in parentheses.

d(sin x) = I

J

dx = cos x dx (frame 211),

^Hldr)]*- -? (framei80) '

d(e
x
) = [^-ie

x)\dx = e
x dx (frame 235).

Go to 269.
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269

Q
Here is an example of the use ofa differential. The diagram shows the

surface ofa disc to which a thin rim has been added. Suppose we want an
approximate value for the change areaAA which occurs when the radius

is increased from r to r + dr.

dA = fi£\ dr= jr (Trr
2
) dr = 2irr dr.

Go to 270.

270

The previous example can also be solved exactly by taking the differ-

ence of the two areas:

AA = 7r(r + Ar) 2 - irr
2 = 2irr ^r + it Ar 2

.

When A r is small compared with r, we can neglect the last term and we
see that

AA = 2irr Ar.

Ifwe let Ar = dr and assume that they are both small then, as we know
from frame 269,

dA « AA - 2tjt dr.

(continued)
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Here is a more intuitive argument for the results. Since the rim is thin,

its area dA is the approximate length, 2irr, multiplied by its width, dr.

Hence,

dA = 2irr dr.

Go to 271.

271

Differentials are handy for remembering some important rules for

differentiation. For instance, the chain rule

dw _ dw du

dx du dx

is almost an identity ifwe treat dw, du and dx as differentials. Actually,

it is not obvious that we can do so, since w and u both depend on a third

quantity, x. Justification for using differentials to obtain the chain rule is

given in Appendix A9.

Go to 272.

272

Here is another relation which is easy to remember with differencials,

though the actual proof demands further explanation:

dx 1

dy dyldx

'

This handy rule lets us reverse the role ofdependent and independent

variables, though it holds true only under certain conditions. Ifyou want

a further explanation, see Appendix A10.

Otherwise, go to 273.

dx
Answers: (267) cos x dx,—2, e* dx

x
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A Little Review and a Few Problems

273

Let's end the chapter by reviewing some of the ideas introduced early

in the chapter and by putting differential calculus to work in a few
problems involving velocity.

Go to 274.

274 —
We hope you recall that the rate ofchange ofposition ofa moving point

with respect to time is called the velocity.

In other words, if position and time are related by a function S, in

order to find the velocity, we S(t) with respect to

Go to 275.

275

You should have written

In other words, if the position and time are related by a function S, in

order to find the velocity, we differentiate S(t) with respect to time (or t).

Go to 276.

276

Can you answer this problem?

The position of a particle along a straight line is given by the following

expression:

S = A sin at.

A and to (omega) are constants.

Find the velocity of the particle.

For the answer, go to 277.
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277

Your answer should have been

v = Aii) cos a)t.

Ifyou got the right answer, skip on to 280. Otherwise, continue here.

The problem is to find the velocity, which is the rate of change of

position with respect to time.

In this problem, the position is S = A sin (at.

v = j- = -rr (A sin (at) = A(o cos (at.
at at

(If you are not sure of the procedure here, see frame 219.)

Can you do this problem?

S = A sin (at + B cos 2(ot.

Find v.

v =

See frame 278 for the answer.

278

v = -rrCA sin (at + B cos 2(at)
at

= A(o cos (at - 2Bu> sin 2a>t.

If you wrote this, go to 280. If not, review frame 220 and then continue

here.

Try this problem: The position of a point is given by

S = A sin (at cos (at.

Find its velocity.

Go to 279 for the answer.
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279

Here is how to solve problem 278.

dS d <A * Ay = -77 = -rr(A sin art cos tot)
at at

= A sin arf 3- (cos ott) + A 3- (sin art) cos art

= -Aa> sin
2

oit + Aco cos
2

<ot

= A&Kcos 2
a>< - sin

2
tat).

As an alternative approach you might note that

sin cot cos (at = Vfe(sin 2orf).

(See frame 71.) Then, u = -37 hj- sin 2(at\. Ifyou feel energetic, show that

this procedure yields the same result as above.

Go to 280.

280

Suppose the height of a ball above the ground is given by y = a + bt +
ct

2 where a, b, c, are constants. (Here we are using y rather than S to

denote position. It makes no difference what we call our variable. This
type of equation actually describes the height of a freely falling body.)

Find the velocity in the y direction.

See 281 for the correct answer.

281

Here is how to do the problem in frame 280.

V =
dt

=
d^

a + bt + ct2) = b + 2ct

Ifyou wrote the correct answer, go to 283. Otherwise, do the problem
below. Let

S = -5- + bt (e and 6 are constants).

(continued)
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Find the velocity.

The answer is in frame 282.

282

dt dt\t 2
I t

3

If this problem gave you any difficulty you should review the begin-

ning of this section before going on.

Otherwise, go to 283.

283

Here is a more difficult problem which you may enjoy. (Ifyou don't feel

in the mood, skip on to frame 285.)

y-axis

—CHD *-axis

P

A carP moves along a road in the x direction with a constant velocity

V. The problem is to find how fast it is moving away from a man standing

at point Q, distance / from the road, as shown. In other words, if r is the

dr
distance between Q and P, find -j-.

(Hint: The chain rule is very useful here in the form zn
=

ZT zn)

dr

dt

Go to 284 after working this out.
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284

From the diagram in 283 you can see that

r
2 = x 2 + I

2
, r = (x

2 + I
2
)
1 ' 2

.

dr
We must find -rr, and we can do so in the following way:

dr = drdx = d_^ 2 + ^1/2 dx

dt dx dt dx dt

1 2x dx
"2 (x

2 + I
2
)
1' 2 dt

x= V

In the last step we have used V =

Ot
2 + Z

2
)
1/2 '

dx

dt'

Go to 285.

285

The problem is to maximize the gross income from selling a new
electronic entertainment device, a Home Whoosie. IfS Whoosies are sold

at price x dollars, the income is Sx. However, as the price is raised the

number ofbuyers decreases. It is estimated that the number ofbuyers at

pricex can be described by the following expression: S(x) = S [l - (x/x )
2
],

where S and x are constants. Note that ifx << x , the number ofsales is

practically independent of price, but that as the price is increased and x
approaches xQ the sales rapidly fall, vanishing at x . (The expresssion is

meaningless for x > x .)

What should be the price x for the maximum income, and what is he
maximum gross income /?

x =

1 =

Go to 286.
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286

The gross income is

/ = Sx = S [l - ix/x )
2
x]

= S (x - x3lxl).

The maximum value of / occurs when -3- = 0.
ax

^ = S (l - 3x 2
/x

3
) =

x 2 = Xq/3, hence x = Wzx = 0.577x -

At the maximum, the gross income is

1 = Sx = S [l - (x/x )
2
]x = S (1 - Vs) Wz x

= 0.385S / -

The conclusion is that the price x should be set at about 57.7 percent of

the maximum value, x dollars, and that the gross income is about

0.385S dollars.

These particular conclusions hold only for the price-sales curve, S(x) =

S [l - (x/x )
2
]. However, the method used here can identify the price that

gives the maximum profit for any price-sales curve you wish to choose.

Go to 287.

287

In deciding whether or not to keep an old automobile, an important

consideration is the estimated cost per year of owning the car. The two

major components of the cost are repairs and depreciation. We shall

assume that the annual repairs cost r, in dollars per year, is given by

r = A + Bt,

whereA andB are constants. The repairs are lowest when the car is new
and are assumed to increase linearly with time. The rate of de-

preciation—the loss in value ofthe car in dollars per year—is taken to be

d = D e^',
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whereD and c are constants. The depreciation rate is highest when the

car is new and most valuable; it decreases exponentially in time, growing

smaller as the car becomes less valuable.

The annual cost due to repairs and depreciation is S = r + d. Find an
expression for the time t at which the cost is a minimum.

Time =

Go to 288.

288

The cost is

S = r + d = A+Bt + De~ ct
.

Anextremum occurs when dSldt = B-cDe~ ct = 0. This can be solved for t:

cDe- ct = B, e~
ct = ^,cD

* i
B

-ct = In -=,
cD

* 1, cD
< =

c
ln

B-

To see whether this is a minimum or a maximum, we must examine
d 2S/dt 2

. (Recall form frame 259 that the second derivative is positive at a

minimum.)

— = c
2De- ct

.

dt<

This is always positive, so the extremum is a minimum. Note, how-
ever, that iicDIB < 1, then ln(cD/B) < 0, and t is negative. What does this

mean?
Consider dSldt at t = 0.

dS\
di \t=o = B-cDe° = B- cD.

(continued)
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IfB < cD, the slope is negative. S initially decreases and has a minimum
at some later time just before it starts to increase. IfB > cD, however, S
increases at t = and keeps on increasing. This is the case for which the

minimum in S occurs at a negative time. This solution has no meaning;

you -can't sell a car before you have bought it!

Go to 289.

Conclusion to Chapter 2

289

The Appendixes contain additional material which may be helpful.

For instance, sometimes one has an equation which relates two var-

iables, y and x, but which cannot be written simply in the formy = fix).

There is a straightforward method for evaluating y : it is called implicit

differentiation and it is described in Appendix Bl. Appendix B2 shows

how to differentiate the inverse trigonometric functions. In this chapter

we have only discussed differentiation offunctions ofa single variable. It

is not difficult to extend the ideas to functions of several variables. The
technique for doing this is known as partial differentiation. If you are

interested in the subject, see Appendix B3.

Many problems involving rates of change lead to equations which

express relations between functions and their derivatives. Such rela-

tions are known as differential equations. Appendix B4 discusses two

common types of differential equations.

All the important results ofthis chapter are summarized in Chapter 4.

You may wish to read that material now as a quick review. In addition, a

list of important derivatives is presented in Table 1 at the back of the

book.

Don't forget the review problems, page 246, ifyou want more practice.

Ready for more? Take a deep breath and go on to Chapter 3.



CHAPTER THREE

Integral Calculus

We are now ready to tackle integral calculus. In this chapter you will

learn:

About antidifferentiation and indefinite integrals

The meaning of integration

How to find the area under curves

How to evaluate definite integrals

How to integrate numerically

Some applications of integral calculus

How to use multiple integrals

290

The Area under a Curve

In this chapter we are going to learn about the second major branch of

calculus—integral calculus. The first branch— differential calculus

—

stems from the problem of finding the slope of the graph of a function.

Slope = f Area

(continued)

151
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Integral calculus stems from another problem related to the graph of

fix): how to calculate the area between fix) and the x-axis bounded by
some initial point a and some arbitrary final point, x, as shown in the

drawing. The area can be calculated by a process called integration. Just

as differentiation is useful formany applications besides finding slopes of

curves—for instance, calculating rates ofgrowth or finding maxima and
minima—so integral calculus has many applications besides finding

areas under curves. However, the area problem motivated the creation of

integral calculus, and we shall use it to motivate the explanation of

integration.

Go to 291.

291
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292

The area in the rectangle is the product of the base, x - a, and the

height, 3. Thus the area is 3(x - a).

Ate) > Ate) <

There is an important convention in the sign ofthe area, for areas can
be positive or negative. In the drawing at the left, x - a is positive since

x > a, and fix) is also positive. Because the base and height are both
positive, the area is positive. However, the area under the graph at the

right is negative, since the base isx- a < 0. Thus, areas can be positive or

negative.

Ate) < Ate) >

Iff(x) is negative while the base interval is positive, the area (base x

height) is negative, whereas if both f(x) and the base are negative, the

area is the product of two negative numbers and is positive.

Go to 293.
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293 "

The area Aix) and the function fix) are closely related; the derivative of

the area is simply fix).

A'Cx) = fix).

We will explain why this relation is true in the next section, but for the

present, we shall simply use it. To find A(x), we must find a function

which, when differentiated, is fix).

Finding a function which, when differentiated, yields another func-

tion, is often called antidifferentiation. The term is descriptive, for the

process essentially involves "differentiation backwards." A more formal

term for the process is integration.

Go to 294.

294 —

To illustrate thatA ' (x) = fix), let's look at some simple areas that one

can calculate directly. We have already discussed the area under the

curve fix) - C, where C is a constant,

Aix) = Cix - a).

Differentiating,

A'Cx) = C = fix).

Find the area Aix) under fix) = Dx between a and x, and prove to

yourself that A'Cx) = fix).

f

If you want to check your result, go to 295.

Otherwise, skip to 296.
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295

One way to calculate the area is to think of it as the difference of the

area of two right triangles. Using area = V2 base x height, we have

AC*) = ±xf(x) - \af{d) = \Dx 2 - ±Da 2
,

Go to 296.

296

To see why A'(x) = fix), consider how the area A(x) changes as x
increases by an amount Ax. A(x + Ax) = A(x) + AA, where AA is the thin

strip shown.

a x (x + A*)

Can you find an approximate expression for AA?

AA =

(« means "approximately equal to.")

This represents a major step in the development of integral calculus,

so don't be disappointed if the result eludes you.

Go to 297.
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297

The answer we want is

AA » f(x) Ax.

If you wrote this, go on to 298. Otherwise, read below.

Let's take a close look at the area. As you can see, the area is a long thin

strip. Unfortunately it is not a rectangle—but is nearly so. Most of the

area is that of the rectangle ABCD and this area is the product of the

length f(x) and its width Ax, that is, f(x) Ax. The desired area AA differs

from the area of the rectangle by the area of the figure ADE, which is

almost a triangle except that the sideAE is not straight. When the value

ofAx becomes smaller and smaller, the area of the figure ADE becomes
smaller at an even more rapid rate because both its base AD and its

height DE become smaller in contrast to the rectangleABCD for which

the length fix) stays fixed and only the width, BC = Ax, decreases.

[Perhaps this argument has a familiar ring to it. What we are implying is

that the approximation approaches an equality in the limit where

AA
Ax— 0. More precisely, lim g-r-r = 1.]* Ar-0 fix) AX

For a sufficiently small value of Ax, then, we can say

AA « fix) Ax.

Note that with similar accuracy we could have said

AA « fix + Ax) Ax,

and with even greater accuracy

A;AA -*¥) Ax.
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However, the first of these is the simplest and is sufficiently accurate if

Ax is small enough.

Go to 298.

298

Using the approximate expression for AA, we can calculateA ' (x) and
justify the identity A ' (x) = fix).

... v dA ,. A(x + Ax) - A(x)
A'(x) =-j-= hm r

ax a*—o Ax

,. AA= lim-r—

.

a^oAx

If Ax is small we can use the result of frame 297.

AA « fix) Ax.

As explained in the last frame, the approximation becomes more and
more exact as Ax becomes smaller and smaller. Hence,

ilM ,. AA .. fix) Ax
A'(x)= limx- = hm*—r = fix).a^oAx ahi Ax

Go to 299.

299

To summarize this section, we have found that the area A(x) under a

curve defined by y = fix) satisfies the equation A ' (x) = fix). Thus, ifwe
can find a function whose derivative is fix), we can find the area.

As previously stated, the process of finding a function whose de-

rivative is another function is called integration or antidifferentiation. In

the following sections we will learn some methods for integration and
apply them to finding areas and to other problems such as finding the

distance traveled by a vehicle whose speed is changing or calculating the

size ofpopulations (or financial accounts) which are growing at a chang-

ing rate.

Go to 300.



158 Integral Calculus

Integration

300

The goal of this section is to learn some techniques for integration or

antidifferentiation. (We will use both terms now, but later drop the

descriptive term antidifferentiation for the more commonly used term
integration.)

In this section we will generally designate a function by fix), and its

integral or antiderivative by Fix). Thus

F'(x) = fix).

This notation describes a basic property ofthe antiderivative, but it only

defines the derivative F'(x), not Fix) itself.

The antiderivative is most frequently written in the following form:

Fix) = j fix) dx.

[fix) dx is called the indefinite integral offix), or simply the integral of

fix). (Later we shall come to another type of integral, called a definite

integral, which is a number, not a function ofa variable.) The symbol
J

is

called an integration symbol, but it is never used alone.

To summarize the notation, ifF' (x) = fix), thenFU) is the

or the of fix).

Go to 301.

301

Often one can find the antiderivative or indefinite integral simply by
guesswork. For instance, if fix) = 1, Fix) =

J
fix) dx = x. To prove this,

note that

F'ix) - ^ix) = 1 = fix).

However, x is not the only antiderivative offix) = 1; x + c, where c is a

constant, is also an antiderivative because

^ix + c) = 1 + = fix).
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In fact, a constant can always be added to a function without changing

its derivative. It is important not to omit this arbitrary constant; other-

wise the answer is incomplete.

Go to 302.

302

Since integration is the inverse of differentiation, for every dif-

ferentiation formula in Chapter 2, there is a corresponding integration

formula here. Thus from Chapter 2,

d sin x

dx
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304

If you missed these due to a careless mistake and if you now un-

derstand the problem, correct your mistake and go on to frame 305. Ifnot,

review the definitions ofthe indefinite integral in the first section of this

chapter and then continue here. If

F = j fix) dx,

then

Therefore if we want to find F, we try to find an expression which when
xn+l

differentiated gives fix). Now the derivative of —t~- is given by

d I xn+1 \ _ 1 dxn+1 1 „

dx\n+l) n + 1 dx n + l
(n l,X X

by the formula for differentiating xn in Chapter 2. Thus, including the

r xn+1
integration constant c, we find I xn dx =-—^ + c. (Note that this formula

will not work for n = -1.)

Likewise, by Chapter 2,

d

so

. (e
x)= e*

dx

$ e* dx = e* + c.

Go to 305.

305

So far we have found integrals by looking for a function whose de-

rivative is the integrand. Although this works well in many cases,

Answers: (300) Antiderivative, indefinite integral (in any order)

1

n + 1
(302) - cos x + c (303) (a) —^r *"+1

. 0») e*
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especially after you have had some practice, it is helpful to have a list of

some of the more important integrals. It is quite on the up and up to use

such a list. Ifyou make much use ofcalculus, you will eventually know by
sight most ofthe integrals listed, or at least be sufficiently familiar with

them to make a good guess at the integral. You can always check your

guess by differentiation.

A table of important integrals is given in the next frame. You can

check the truth of any one of the equations

by confirming that

/ fix) dx = Fix)

^-A*
We will shortly use this method to verify some of the equations.

Go to 306.

306

List ofImportant Integrals. The arbitrary integration constant is omit-
ted for simplicity; a and n are constants.

1.
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11.
J
cos x dx = sin x

12. j tan x dx = -ln(cos x)

13.
J
cot x dx = ln(sin x)

14.
J
sec x dx = ln(sec x + tan x)

15.
J
sin x cos x dx = = sin 2 x

16. —5 5 =— tan —
J a z + x' a a

17.
J

dx • _i x—--=sin -
Va 2 - x 2 a

dx
18 - J V,2^. ,

=ln(^VP^a^)
V^2

For convenience this table is repeated as Table 2 near the back of the

book (page 256).

Go to 307.

307

Let's see ifyou can check some of the formulas in the table. Show that

integral formulas 9 and 15 are correct.

If you have proved the formulas to your satisfaction, go to 309.

If you want to see proofs of the formulas, go to 308.
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308

To prove that Fix) =
j fix) dx, we must show that -3— = fix).

9. Fix) = x In x - x, fix) = In x.

j- = -j- ix In x - x) = x (

-J
+ In x - 1 = In x = f

15. Fix) = -~ sin
2
x, fix) = sin x cos x = f

d (1 . 2 \ 1 /o x d / •

j- g
sm *)

=
^

sin x
^ rf~^

sin ^ = sin x cos ac-

Go to 309.

Some Techniques of Integration

309

Often an unfamiliar function can be converted into a familiar function

having a known integral by using a technique called change ofvariable.

The method applies to integrating a "function of a function." (Dif-

ferentiation of such a function was discussed in frame 198. It is done
using the chain rule.) For example, e~

x can be written e~
u

, where u = x 2
.

With the following rule, the integral with respect to the variable x can be

converted into another integral, often simpler, depending on the variable

j wiu) dx =
J

wiu)
dx~\

du
du.

Let's see how this works by applying it to a few problems.

Go to 310.

310

Consider the problem of evaluating the integral

J
xe

~"2

dx.

(continued)
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Let u = x 2
, or x - Vu. Hence dx/du = 1/2Vu = 1/ 2x. Using the rule

for change of variable, jw{u) dx =
J

u;(u)-j- du, the integral becomes

J*
xe~

u ^ du =
| / e~

u du = -|e" u + c = - ^r*
2

+ c.

It is correct, note that

2i
tta ~2J """ _

2
e T "

To prove that this result is correct, note that

d / 1

as required.

Try the following somewhat tricky problem. If you need a hint, see

frame 311.

Evaluate / =
J
sin 6 cos 6 dd.

To check your answer, go to 311.

311

Let u = sin 6. Then -rz = cos 6, and by the rule for change of variable,

f sin d cos e dO - \ u cos d —- a du
J J C08 8

= fudtt = sM 2 + c = „ sin
2 6 + c.

Go to 312.

312

Here is an example of a simple change of variable. The problem is to

calculate Jsin 3x dx. If we let u = 3x, then the integral is sin u, which is

easy to integrate. Using dx = du/3, we have

J
sin 3x dx =

^ J
sin udu = ^ (-cos u + c)

= s(cos 3x + c).
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To see whether you have caught on, evaluate

C X X
J
sin „ cos ~ dx.

(You may find the integral table in frame 306 helpful.)

. x x ,

sin = cos ;ffit =

To check your answer, go to 313.

313

f . X X , o X
J
sin = cos = dx = sin = + c.

Ifyou obtained this result, go right on to 314. Otherwise, continue here. If

we let u = x/2, then dx = 2 du and

j sin ~ cos „ dx = 2
J
sin u cos u du.

> of frame 306 we have

f • j 1-2 1 • 2 X ,

I sin u cos u du = = sin u + c = » sin » + c,

2
wo

2

From formula 15 of frame 306 we have

C X X . n(l . o x
, \ 2 x , n

J
sin 2 cos g cto = 2k sin" o c

)

= s 9

(C = 2c = any constant.)

Let's check this result:

^(sin 2

J
+ C) - 2 (sin | cos

g (^
= sin \ cos

|

as required. (We have used the chain rule here.)

Go to 314.
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314

dx
Try to evaluate

J 2 T l2 2 '
wnere a an(* & are constants. The integral

table in frame 306 may be helpful.

dx

a 2 + 6V

Go to 315 for the solution.

315

If we let u = bx, then dx = dulb and

f
cfcc 1

[
__du__

J a 2 + 6 2* 2 6 Ja 2 + « 2

=^ I tan" 1
-jj- + c I (Frame 306, formula 16)

= -r tan — + c .

ao\ a /

Go to 316.

316

We have seen how to evaluate an integral by changing the variable

from x to u = ax, where a is some constant. Often it is possible to simplify

an integral by substituting still other quantities for the variable. Here is

an example. Evaluate.

r x dx
J x 2 + 4'

Suppose we let u 2 = x 2 + 4. Then 2u du = 2x dx, and

r x dx f u du t du , , , \/ 2 , A ,
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Try to use this method for evaluating the following integral:

j xVl + x 2
dx.

Answer:

Go to 317 to check your answer.

317 —

Taking u 2 = 1 + x 2
, then 2u du = 2x dx and

j xVl + x 2 dx = j u(u du) = j u 2 du = = u3 + c

= |"(1 + X 2
)
3' 2 + c.

Go to 318.

318

A technique known as integration by parts is sometimes helpful.

Suppose u and v are any two functions ofx. Then, using the product rule

for differentiation,

d , . dv
,

du
-s- (UV) = U -j- + V -s-.
ax dx dx

Now integrate both sides of the equation with respect to x.

J
-T- (uv) dx = j u -j- dx + j v -j- dx,

j d(uv) = j u dv + j v du.

But,
J
d(uv) = uv, and after transposing, we have

J
u dv = uv - j v du.

(continued)
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Here is an example: Find j sin dd.

Let u= 0,dv = sin dd. Then it is easy to see that du = d0,v = -cos 0.

Thus

J
sin dd = j u dv = uv - \ v du

= -0cos 0-
J
(-cos 0) dd

= - cos + sin 0.

Go to 319.

319

Try to use integration by parts to find
J

jce* dx.

Answer (constant omitted):

[(x - 1) e* I
xe* I

e* I xe* + x I none of these]

If right, go to 321.

If you missed this, or want to see how to solve the problem, go to 320.

320

To find
J
xe* dx using the formula for integration by parts, we can let

u = x, dv = e* dx, so that du = dx, v = e*. Then,

j xe1 dx = xe? - j e* dx

= xex -ex = (x- De1
.

Go to 321.
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321

Find the following integral using the method of integration by parts:

J
x cos x dx.

Answer:

Check your answer in 322.

322

J
x cos x dx = x sin x + cos x + c.

Ifyou want to see the derivation of this, continue here. Otherwise, go

on to 323.

Let us make the following substitution and integrate by parts:

u = x, dv = cos x dx.

Thus du = dx, v - sin x.

J
x cos x dx =

J
u dv = uv - j v du = x sin x -

J
sin x dx

= x sin x + cos x + c.

Go to 323.

323

In integration problems it is often necessary to use a number of

different integration procedures in a single problem.

Try the following (6 is a constant):

(a) J(cos be + b) dd =

(continued)



170 Integral Calculus

(b) j x In x 2 dx =

Go to 324 for the answers.

324

The correct answers are

(a) /(cos 50 + 6) d6 = = sin 50 + bd + c

(b) / x In x 2 dx =
\ [x

2
(In x 2 - 1) + c]

If you did both of these correctly, you are doing fine—jump ahead to

frame 326. If you missed either problem, go to frame 325.

325—

If you missed (a), you may have been confused by the change in

notation from x to 0. Remember x is just a general symbol for a variable.

All the integration formulas could be written with 0, or z, or whatever

you wish replacing the x. Now for (a) in detail:

J"
(cos 50 + b) dS = j cos 56 d6 + j b dd

=
^ J

cos 56 d(56) +
J
bdd

= = sin 56 + b6 + c.

5

For problem (b), let u = x 2
, du = 2x dx:

r If 1

J
x In x 2 dx = »

J
\n u du = -x{u In u-u + c).

[The last step uses formula 9, frame 306.] Therefore,

jx\nx 2 dx = ±(x 2 \nx 2 -x 2 + c).

You could also have solved this problem by integration by parts.

Go to 326.

Answer: (319) (x -1) e*
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More on the Area under a Curve

326

The idea of integration was introduced by the problem of finding the

area A(x) under a curve, fix). In frame 297 we showed that

A'(x) = f(x),

and we have learned a number of techniques for finding the integral ofa

function. In general, it can be written

A(x) = Fix) + c.

F(x) is any particular antiderivative offix) and c is an arbitrary constant.

However, given f(x) and the interval bounded by a and some value x,

there is nothing arbitrary about the area. Thus, to find the area, we must
find the correct value for the constant c.

The simplest way to do this is to note that ifwe take x = a, the area has

vanishing width and must therefore itself be zero. Hence

A(a) = F(a) + c = 0.

So, c = -F(a), and the area is given by

A(x) = Fix) - F(a).

Go to 327.
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327
y-axis

To see how all this works, we will find the area under the curve y = x 2

between x = and some value of x. Now

jx 2 dx=^x3 + c = F{x).

Aix) = F(x)-F(0) = | x3 + c -
(|

3 + c)

1 3= — x

Note that the undetermined constant c drops out, as indeed it must. This

occurs whenever we evaluate an expression such as F(x) - F(a), so we can

simply omit the c. We'll do this in the next few frames.

Go to 328.

328

Can you find the area under the curvey - 2x 2
, between the points x = 2

and x = 3?

A = [13 I
Vs

I

3% I 18]

If right, go to 330.

Otherwise, go to 329.
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329

12 3 4

Here is how to solve the problem:

A = F(3) - F(2), Fix) =
J*
2x 2 dx = | x3 ,

A=|x 27 -|x8=18-f =
f.

Go to 330.

330

Find the area under the curve y = 4x3 between x = -2 and x — 1.

A = [17 I

15/4 I 15 I
-16]

Go to 331.

331

Before we go on, let's introduce a little labor-saving notation.

Frequently we have to find the difference ofan expression evaluated at

two points, as F{b) - F(a). This is often denoted by

F(b)-F(a) =F(x)\".

For instance, x 2
\

= b 2 - a'

(continued)
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As another example, the solution to the last problem could be written

/:,
4x 3 dx = x4 24 - (-I)" = 16 - 1 = 15.

Go to 332.

332

Let's do one more practice problem:

The graph shows a plot ofy = x3 + 2. Find the area between the curve

and the x-axis from x = - 1 to x = +2.

v-axis

Answer: [5 I V* I 4 I

lV* I

3% I none of these]

If right, go to 334.

Otherwise, go to 333.

Answers: (328) »%

(330) -15
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333

Here is how to do the problem:

A = F(2) - F(- 1) = Fix)
-i'

F =
j y dx =

f
(x

3 + 2) dx = ^ x4 + 2x,

*-6*+*)&-(? + «)-6-«)-?-

Go to 334

Definite Integrals

334

In this section we are going to find another way to compute the area

under a curve. Our new result will be equivalent to that of the last

section, but it will give us a different point of view.

Let's briefly summarize the last section. If A is the area under the

curve off(x) between x = a and some value x, then we showed (frame 297)

that dAldx = fix). From this we went on to show (frame 326 that ifF(x) is

an indefinite integral offix), i.e.,F' = f, then the area under fix) between
the two values of x, a and b, is given by

A =Fib)-Fia).

Now for a new approach!

Go to 335.
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335

Let's evaluate the area under a curve in the following manner:

fix)

/(*l)

*1 *L *3 x4

First we divide the area into a number of strips of equal widths by

drawing lines parallel to the axis offix). The figure shows four such strips

drawn. The strips have irregular tops, but we can make them rectangu-

lar by drawing a horizontal line at the top ofeach strip as shown. Suppose

we label the strips 1, 2, 3, 4. The width of each strip is

Ax =
b — a
4 *

The height of the first strip is f(x x ), where x x is the value of jc at the

beginning ofthe first strip. Similarly, the height of strip 2 is f(x2 ), where
x2 = x-l + Ax. The third and fourth strips have heights f(x3 ) and f{x4),

respectively, where x3 = x x + 2 Ax and x4 = xx + 3 Ax.

Go to 336.

336

You should be able to write an approximate expression for the area of

any of the strips. If you need help, review frame 297. Below write the

approximate expression for the area of strip number 3, AA3 ,

AA., -

For the correct answer, go to 337.

Answer: (332) 39/4
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337

The approximate area of strip number 3 is AA 3 = /*(x3) Ax.

If you want to see a discussion of this, refer again to frame 297.

Can you write an approximate expression for A, the total area of all

four strips?

A -

Try this, and then see 338 for the correct answer.

338

An approximate expression for the total area is simply the sum of the

areas ofall the strips. In symbols, sinceA = AA X + AA 2 + AA 3 + AA 4 , we
have

A - fl*i) Ajc + f(x2) Ax + f(x3) Ax + f(x4 ) Ax.

We could also write this

AT

A = 2 A*«) Ax.
i=l

2 is the Greek letter sigma which corresponds to the English letterS and

stands here for the sum. The symbol2 #(*«) meansg(x x ) + g(x2) + g(x3) +

• • • + g(xN).

Go to 339.

339

Suppose we divide the area into more strips each ofwhich is narrower,

as shown in the drawings. Evidently our approximation gets better and

better.

f(*)

n = 4

f(x)

n = 8 n- 16

(continued)
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Ifwe divide the area intoN strips, thenA « 2 A*,-) Ax, where iV = -r— .

Now, if we take the limit where Ax —> 0, the approximation becomes an
equality. Thus,

N
A = lim 2 A*i) Ax.

A*— ,t"i

Such a limit is so important that it is given a special name and symbol. It

is called the definite integral and is written I fix) dx. This symbol looks

similar to the indefinite integral,
J
fix) dx, and as we shall see in the next

frame, it is related. However, it is important to remember that the

definite integral is defined by the limit described above. So, by definition,

fV(*) dx = lim 2 /W Ax.

(Incidentally, the integral symbol
J
evolved from the letter S and like

sigma it was chosen to stand for sum.)

Go to 340.

340

With this definition for the definite integral, the discussion in the last

frame shows that the area A under the curve is equal to the definite

integral.

A = fjix) dx.

But we saw earlier that the area can also be evaluated in terms of the

indefinite integral.

F(x) = jf(x)dx

by

A - Fib) - Fia).
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Therefore we have the general relation

jjix) dx = Fib) - Fia) =
Iffix) dx\

Thus the definite integral can be expressed in terms of an indefinite

integral evaluated at the limits. This remarkable result is often called

the fundamental theorem of integral calculus.

Go to 341.

341

To help remember the definition of definite integral, try writing it

yourself. Write an expression defining the definite integral of fix) be-

tween limits a and b.

To check your answer, go to 342.

342

The correct answer is

b N , _
J fix) dx = lim 2 fixd Ax, where AT = -2T-£

.

Ja Ax-o jTi Ax

Congratulations if you wrote this or an equivalent expression.

If you wrote

ja fix) dx = Fib) - Fia), where Fix) =
j fix) dx,

your statement is true, but it is not the definition of a definite integral.

The result is true because both sides represent the same thing—the area
under the curve offix) between x = a and x = b. It is an important result,

since without it we would have no way of evaluating the definite inte-

gral, but it is not true by definition.

(continued)
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If this reasoning is clear to you, go right on to 343. Otherwise, review

the material in this chapter, and then, to see a further discussion of

definite and indefinite integrals,

Go on to 343.

343

Perhaps the definite integral seems an unnecessary complication to

you. After all, the only thing we accomplished with it was to write the

area under a curve a second way. To actually compute the area, we were

led back to the indefinite integral. However, we could have found the

area directly from the indefinite integral in the first place. The im-

portance ofthe definite integral arises from its definition as the limit ofa

sum. The process of dividing a system into little bits and then adding

them all together is applicable to many problems. This naturally leads to

definite integrals which we can evaluate in terms of indefinite integrals

by using the fundamental theorem in frame 340.

Go to 344.

344

Can you prove that

j

b

a
f(x)dx = -fb f(x)dx?

After you have tried to prove this result, go to 345.

345

The proof that
J fix) dx = -

]b
fix) dx is simple.

£f(x) dx = Fib) - Fia), where Fix) = / fix) dx,
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but

£Ax) dx = Fia) - Fib) = - [Fib) - F(a)]

= -jjix)dx.

y-axis

The points a and 6 are called the limits of the integral [nothing to do

with lim /"(*); here limit simply means the boundary]. The process of
jt-»a

evaluating

ja
f(x)dx

is often spoken of as "integrating f(x) from a to b," and the expression is

called the "integral of fix) from a to 6."

Go to 346.

346

J.27T sin 6 dfP.

[1 I I 2ir I
-2

I -2tt I
none of these]

Go to 347.
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347

/2ir |2ir

jo
sin 6 dd = -cos d\

Q
= - (1 - 1) = 0.

sine

It is easy to see why this result is true by inspecting the figure. The
integral yields the total area under the curve, from to 2tt, which is the

sum of Ai and A 2 . But A 2 is negative, since sin 8 is negative in that

region. By symmetry, the two areasjust add to 0. However, you should be

able to find A 1 or A 2 separately. Try this problem:

Ai = J^sin dB = [1 I 2 I
-1

I
-2

I ir I 0]

If right, go to 349.

Otherwise, go to 348.

348

A l
= j sin d d6 = -cos 6 L - - [-1 - (+1)] = 2.

If you forgot the integral, you can find it in the table on page 256. In

evaluating cos 6 at the limits, we need to know that cos ir= —1, cos = 1.

Go to 349.

Answer: (346)
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349

Here is a graph of the function y = 1 - e~

y-axis

Can you find the shaded area under the curve between the origin

and x?

Answer: [e~
x

I 1 - e~
x

I x + e'
x

I
x + e'

x - 1]

Go to 351 if you did this correctly.

See 350 for the solution, or if you want to see a discussion

of the meaning of the area.

350

Here is the solution to 349.

A = fa** = f U-e-
x)dx = fdx-fo e-

x dx

= [x- (-e~
x
)]

\Q
= [x + e~

x
]

Q
x + e~

x - 1,

The area found is bounded by a vertical line through x. Our result

givesA as a variable that depends on x. Ifwe choose a specific value for x,

we can substitute it into the above formula for A and obtain a specific

value for A. We have evaluated a definite integral in which one of the

boundary points has been left as a variable.

Go to 351.
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351

Let's evaluate one more definite integral before going on. Find:

Jo VT^2-

(If you need to, use the integral tables, page 256.)

Answer: [0 I
1 I

°°
I ir

I
7r/2 I

none of these]

If you got the right answer, go to 353.

If you got the wrong answer, or no answer at all, go to 352.

352

From the integral table, page 256, we see that

f
<ix

J \fi
— sin x + c.

Therefore,

f
1 dx • -l I

1
• -l 1 • -l a

I
— . = sin L = sin 1 - sin 0.

Jo VI - x l |o

But sin"
1 1=9, since sin^ = 1. Similarly, sin

-1 = 0. Thus, the

integral has the value ^ - = „.

Answers: (347) 2 (349) x + e~
x - 1
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A graph offix) = - is shown above. Although the function is
VI - * 2

discontinuous at x = 1, the area under the curve is perfectly well defined.

Go to 353.

Numerical Integration

353

In the preceding frames we learned a few of the techniques for in-

tegration; the references listed in Appendix B describe many others.

There is, however, no general method for finding the indefinite integral

ofa function. Indefinite integrals ofhundreds offunctions are known and
listed in the integral tables. Many functions can be integrated by some
clever change of variable which transforms them into one of the tabu-

lated forms, but integrals for many other functions are simply not

known. Nevertheless, definite integrals can always be evaluated numer-

ically. With a computer, numerical integration is often so accurate and
efficient that a definite integral can be calculated as easily as if it were

tabulated. A computer is not essential, but you will find that a calculator

(particularly a programmable calculator) is an enormous time saver in

carrying out numerical integration.

In this section we shall describe numerical integration. The one prob-

lem has been designed so that it can be worked without a calculator.

Go to 354.
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354

Recall from frame 339 that the definite integral is the limit of a sum

Ly dx = l

i™o£1

y{Xi)£i '

where A = (xb - xa)/N. As N increases, the area under the rectangles

approaches the area under the curve.

For a finite value ofN, the area under the rectangle is not identical to

the integral [unless y(x) = constant], but it can be close. This is the basic

idea of numerical integration. Here is the procedure.

1. Divide the interval b - a into some convenient number N of equal

intervals, A=(6 - a)IN.

2. Evaluate y t
= y(x,) at each interval, where i = 1,2,...,N.

3. Multiply each y, by A.

4. Add the results.

The final result is in an approximation to the integral. How good the

approximation is depends on the choice ofN and the precise method by

which the sum is evaluated.

In carrying out the above steps, it may have already occurred to you

that a great deal of multiplication is avoided if one first adds all the y/s

and then multiplies the final result by A. Thus,

N N
s = 2 (y,A) = a 2 yt

Go to 355.

355 "

In evaluating the integral numerically, one could choose for y t
the

value of y at either end of the interval, as in the drawings. For the

function shown, it is evident that one choice underestimates the integral

and the other overestimates it. Neither looks particularly accurate.

Taking for y t
the value y at either end of the interval is clearly less good

than taking it at the midpoint. However, an even better procedure would

be to take a suitable weighted average ofy at the ends and the middle.

Answer: (351) tt/2
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An averaging process that is simple, accurate, and widely used consid-

ers the interval in pairs and weights the midpoint ofeach pair four times

that of each end. In that case,

y t
= g(y«-i + 4yt + y,+i).

(Note that the width of this pair of segments is 2A, not A.) If then the

entire interval is divided into an even number of intervals,

r
B

, 2A
lA
ydx = "g- Cyo + 4v! + y2 + 4y3 + y4 + • • • + ys-2 + 4?jv-i + Vn)

= 3(^0 + 4v! + 2y2 + 4y3 + 2y4 + + 2^-2 + 4y;v-i + yN).

This method is called Simpson's rule. If you would like to know just

why it works so well, go to 356. Otherwise,

Skip on to 357.

356

Simpson's rule is based on the idea that the simplest curve which can

(continued)
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go through three arbitrary points is a parabola. So, ifwe assume that in

the interval shown

y = ax 2 + bx + c

and demand thaty, = ax] + bxj +c, wherej = i-l,i, and i + 1 in turn, one

has three equations; these are just the number of equations needed to

define the three constants, a, 6, and c. The algebra ofsolving for a, 6, and c

is straightforward but a little lengthy. You may want to work it out for

yourself, but in any case, the result is that the area in the segment x^i <
x < xi+1 is given by

3 (y,-i + 4y (
+ y 1 + 1 ),

which is the expression used in Simpson's rule.

Go to 357.

357

Here is an example of how Simpson's rule works.

f
10

The goal is to calculate / = x3 dx. We can do this intergral exactly,

which will make it easy to check the accuracy of the numerical calcula-

tion.

•f
x4 dx = -x5

5
= \ x 100,000 = 20,000.

5

We shall takeN = 10. Then, A =^p = 1. *o - 0, *10 = 10, and in

general, jc, = (i)(A) = i.

If we denote the sum of the odd terms by

Sodd = Si + S3 + S5 + Sj + S9

and the sum of the even term within the interval by

Seven = S2 + S4 + S6 + Ss ,

then, by Simpson's rule, the approximation to the integral is

/' = |(y + 4Som + 2Seven + y10).



/' can be calculated using the tables below.
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X, Xf x, x, Xi X,

1
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which follows from formula 16 in Table 2. Because trlA = tan
-1

1, one has

a f
1 d*

ir=4 I 5-.

Jo 1 + x 2

You may wish to try your skill by integrating other functions whose
integrals you know, for instance, sin 6 or e~

x
.

It is evident that by numerical integration you can find the definite

integral ofany function, and therein lies its power. With computers it is

possible to integrate numerically at very high speed. One must have

some criterion for choosing the interval size and be able to deal with

problems such as singularities in the integral. Nevertheless, with the

simple method described here you can often do surprisingly well.

Go to 359.

Some Applications of Integration

359

In this section we are going to apply integration to a few simple

problems.

In Chapter 2 we learned how to find the velocity of a particle if we
know its position in terms oftime. Now we can reverse the procedure and

find the position from the velocity. For instance, we are in an automobile

driving along a straight road through thick fog. To make matters worse,

our mileage indicator is broken. Instead of watching the road all the

time, let's keep an eye on the speedometer. We have a good watch along,

and we make a continuous record of the speed starting from the time

when we were at rest. The problem is to find how far we have gone. (This

is a dangerous method for navigating a car, but it is actually used for

navigating submarines and spacecraft.) More specifically, given v(t),

how do we find Sit), the distance traveled since time t when we were at

rest? Try to work out a method.

Sit) =

To check your result, go to 360.
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360

Since

dSV=
dt'

we must have dS = v dt (as was shown in 263).

Now let us integrate both sides from the initial point (t = t ,S = 0) to

the final point (t, S).

We have

so

if „ dS = ( v dt,
Js=o Jt

'

S = ( v dt.

If you did not get this result, or would like

to see more explanation, go to 361.

Otherwise, go to 362.

361

t (t + At>

Another way to understand this problem is to look at it graphically.

Here is a plot of v(t) as a function of t. In time A t the distance traveled

is AS = v At. The total distance traveled is thus equal to the area under
the curve between the initial time and the time of interest, and this is

£ v(t) dt.

Go to 363.
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362—

Suppose an object moves with a velocity which continually decreases

in the following way.

v(t) = v e

(v and b are constants). At t = the object is at the origin; S = 0. Which of

the following is the distance the object will have moved after an infinite

time (or, if you prefer, after a very long time)?

vo
[0 I i> I v e~

l
I -r I

<*>]

If correct, go to 364.

Otherwise, go to 363.

363

Here is the solution to the problem of frame 362.

Sit) - S(0) = j'
Q
vdt = J^o e~

bt
dt

= _^ (e-«_l).««-o--£«-"|

We are interested in limS(£), but since e as t -* oo, we have

MmSit) = --^(0-1) =-^.
*-»* o o

Although the object never comes completely to rest, its velocity gets so

small that the total distance traveled is finite.

Go to 364.
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364

Not all integrals give finite results. For example, try this problem.

A particle starts from the origin at t = with a velocity v(t) = Vo/(b + t),

where v and 6 are constants.

How far does it travel as t
—* °°?

\v In t l-r- I 75 I
none of these

Go to 365.

365

It is easy to see that problem 364 leads to an infinite integral.

sw " °
= Lov

°TTT = v
°
ln(6 + t] t

= v [ln(6 + t) - In 6]

= „ ln(l + i)

Since ln(l + tlb) —»<» as <—»<», we see that S(t) —> °° as t —* ».

In this case, the particle is always moving fast enough so that its

motion is unlimited. Or, alternatively, the area under the curve v(t) =

VoKb + i) increases without limit as t —* ».

Go to 366.

366

Integration can be used for many tasks besides calculating the area

under a curve. For example, it can be used to find the volumes of solids of

known geometry. A general method for this is explained in frame 380.

However, one can calculate the volume of symmetric solids by a simple

(continued)
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extension ofmethods we have learned already. In the next few frames we
are going to find the volume of a right circular cone.

The height ofthe cone is h, and the radius ofthe base isi?. We will let x

represent distance vertically from the base.

Our method of attack is similar to that used in frame 339 to find the

area under a curve. We will slice the body into a number of discs whose

volume is approximately that ofthe cone in the figure (the cone has been

approximated by eight circular discs). Then we have

i=i

where A V
t
is the volume ofone ofthe discs. In the limit where the height

of each disc (and hence the volume) goes to 0, we have

V = jdV.

In order to evaluate this, we have to have an expression for dV. To find

this,

Go to frame 367.

367

Because we are going to take the limit where AV —* 0, we will

represent the volume element by dV from the start.

Below is a picture of a section of the cone, which for our purposes is

represented by a disc. The radius of the disc is r and its height is dx. Try

to find an expression fordV in terms ofx. (You will have to find r in terms

ofx).

Answer: (363)^

(364) none of these
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< 2r

V V _x°
dx

dV =

To check your result, or to see how to obtain the result, go to 368.

368

dV = TTR
2(l-j]

2
dx.

If you got this answer, go on to 369.

If you want to see how to derive it, read on.

The volume of this disc is the product of the area and height. Thus,
dV = nr 2

dx. Our remaining task is to express r in terms of jc.

The diagram shows a cross section of the cone. Since r and R are
corresponding edges of similar triangles, it should be clear that

r

R
h - x

,orr = R[ 1 -*-
. Thus,

dV = nr 2 dx = ttR
2 1-t dx.

Go to 369.
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369

We now have an integral for V

Try to evaluate this.

V =

To check your answer, go to 370.

370

You should have obtained the result

V = ± irR
2
h.

Congratulations, if you did. Go on to 371. Otherwise, read below:

*-j:«*1i -j)
,*-'*,

j:(
i-? + !p)*

"^ +Jj^l-= 7TR 2 (h-h + lhH"*\"

± irR 2
h.

Go to 371.

371

Here is one more problem. Let's find the volume of a sphere.

It will simplify matters if we find the volume of a hemisphere, V,
which is just half the required volume, V. Thus, V = V72.
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Can you write an integral which will give the volume of the hemi-
sphere? (The slice ofthe hemisphere shown in the drawing may help you
in this.)

V' =

Go to 372 to check your formula.

372

The answer is

V = £ tt(R
2 - x 2

) dx.

If you wrote this, go ahead to frame 373. Otherwise, read on

.

(continued)



198 Integral Calculus

r = ^R^:

Here is a vertical section through the hemisphere. The volume of the

disc between x and x + dx is nr 2
dx. But, as can be seen from the triangle

indicated, x 2 + r
2 = R 2

, so

r
2 = jR 2_ x 2

Hence, dV = tt(R
2 - x 2

) dx and V = £tt(R 2 -x 2
) dx.

Go to 373.

373

Now go ahead and evaluate the integral

V = f Tr{R
2 -x 2)dx.

374

V =

To see the correct answer, go to 374.

V = £ ir{R
2 - x 2

) dx = tt(r
2x-±x3\\*

= iR3
-l

R3
)
= hR3 -



Since V = 2V v =
I
.«..
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Go to 375.

Multiple Integrals

375

Although the subject of this section—multiple integrals—is essential

for some problems, it is not needed for many others. Multiple integrals

are also a little complicated. Therefore, ifyou feel you have had about as

much calculus as you want right now, you should skip to the conclusion,

frame 384.

The integrals we have discussed so far, ofthe form
J
fix) dx, have had a

single independent variable, usually called x. Double integrals are sim-

ilarly defined for two independent variables, x andy. In general, multiple

integrals are defined for an arbitrary number of independent variables,

but we will only consider two. Note that up to now y has often been the

dependent variable: y = fix). In this section, however, y along with x will

always be an independent variable and z = fix, y) will be the dependent

variable. Thus, 2 is a function of two variables.

In frame 339 the definite integral offix) between a and b was defined

by

Ax) dx = lim X Ax;) Ax.
J° Ax-> fT\

The double integral is similarly defined, but with two independent

variables. There are, however, some important differences. For a single

definite integral the integration takes place over a closed interval be-

tween a and b on the x axis. In contrast, the integration of fix, y) takes

place over a closed region R in the x-y plane.

To define the double integral, divide the region R into N smaller

regions each of area AA
(
.

(continued)
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Let xh y t
be an arbitrary point inside the region AA

;
. Then in analogy

to the integral of a single variable, the double integral is defined as

jjfix,y)dA -- lim 2 f(Xi,yi) &Ai.
AA,—*0 ;=i

Go to 376.

376

The double integral is often evaluated by taking AA, to be a small

rectangle with sides parallel to the x and y axes, and by first evaluating

the sum and limit along one direction and then along the other. Consider

the upper portion of the region R in the x-y plane to be bounded by the

curve y = g2ix), while the lower portion is bounded by giix), as in the

diagram.

y = g2(*>

Region R

If we let AAj = Axk Ay,, then

rr
N

\\ fix, y)dA = lim 2 fixh y ( ) AA,

P 9

=
l
im

n l
im

. 2 2 A**, y,) Ay, A**.
Ax»-.0 A>,-»0 ^ = i ;=i

This is a complicated expression, but it can be simplified by carrying it

out in two separate steps. Let us insert some brackets to clarify the

separate steps.

„ * r 1
1

jjfix, y)dA = lim 2 lim 2 fixk , yd AyJ Ax*.

g Ai4—0/k = 1 LA>r-»0,= 1 J

The first step is to carry out the operation within the brackets. Note that

jc* is not altered as we sum over I in the brackets. This corresponds to

summing over the crosshatched strip in the diagram with xk treated as
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approximately a constant. The quantity in square brackets is then mere-

ly a definite integral of the variable y, with x treated as a constant. Note

that although the limits ofintegration, giix) andg2(x), are constants for a

particular value ofx, they are in general nonconstant functions of jc. The
quantity in square brackets can then be written as

f(xk , y) dy.

This quantity will no longer depend on y, but it will depend on xk both

through the integrand f(xk,y) and the limits gi(xk),g2(xk ). Consequently,

$ fix, y) dA= lim
o
i [££ f(xk , y) dy] ^xk

In calculations it is essential that one first evaluate the integral in the

square brackets while treating x as a constant. The result is some
function which depends only on x. The next step is to calculate the

integral of this function with respect to x, treating x now as a variable.

The double integral expressed in the above form is often called the

iterated integral.

Go to 377.

377

Multiple integrals are most easily evaluated if the region R is a

rectangle whose sides are parallel to the x and y coordinate axes, as

shown in the drawing.
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As an exercise to test your understanding, how would the above

expression be written if the integration over x were to be carried over

before the integration over v.

Go to 378.

378 "

The double integral, integrated first over x, is written

Jjfix, y)dA =
aV(*, y) dx] dy.

R L J

This can be found merely by interchanging the v and x operations in the

evolution ofdouble integrals. (Note that the integration limits have to be

interchanged at the same time.)

To see how this works, let us evaluate the double integral of

fix, y) = 3x 2 + 2y over the rectangle in the x-y plane bounded by the lines

x = 0, x = 3, y = 2, and y = 4.

The double integral is equal to the iterated integral.

Jgx 2 + y)dA =
|

3

[J2

4

(3x
2 + 2y) dy]dx.

Alternatively we could have written

§fe
2 +y)dA = f2 [f (3x*+2y)dy\dx.

Evaluate each ofthe above expressions. The answers should be the same.
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Integral =

If you made an error or want more explanation, go to 379.

Otherwise, go to 380.

379

By the first expression,

£[£(3*
2 + 2y) dy] dx = fQ {3x*y + y

2
) \\

dx

=
Jj3*

2(4-2) + (16-4)]dx =
/

3

(6*
2 + 12) dx

= (6y + 12x)
\l
= 54 + 36 = 90.

By the second expression,

J"

3

(3x
2 + 2y) dxj dy = f2 (x

3 + 2yx)
fQ
dy

= f2 (27 + 6y) dy = (27y + 3y
2

)\l

= 108 + 48 - (54 + 12) = 90.

Go to 380.

J2 [Jo

380

Just as the equationy - fix) defines a curve in the two dimensional x-y

plane, the equation z = fix, y) defines a surface in the three-dimensional

x-y-z space since that equation determines the value of 2 for any values
assigned independently to x and y.

Surface

fix, y)

(continued)
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We can easily see from the above definition ofthe double integral that

JT/T*. y) dA is equal to the volume V of space under the surface z = fix, y)

and above the regionR . In this case fix t , y t) is the height ofcolumn above

AA;. Therefore, fix^yi) AA is approximately equal to the volume of that

column. The sum of all these columns is then approximately equal to the

volume under the surface. In the limit as AAj—»0, the sum defining the

double integral becomes equal to the volume under the surface and above

R, so

V = jjzdA =
ft

fix, y) dA.
ft r

Calculate the volume under surface defined by z = jc + y and above the

rectangle whose sides are determined by the lines x = l,x = 4,y = 0, and

y = 3.

Go to 381.

381^

The answer is 36. If you obtained this result, go to frame 382. If not,

study the following.

V=Jfa + y)<M = f[J^te + y)dy\dx

=r(^£)i>=jM*

Answer: (378) 90
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The iterated integral could just as well have been evaluated in the

opposite order.

£[j> + y)dX]dy = f (^
+ yx)\

4

l
dy

382

/3 2 15 \ 13 27 . 45 „

Go to 382.

y-axis

The bottom of this plow-shaped solid is in the form of an isosceles

triangle with base b and height a. When oriented along the x-y axes as

shown, its thickness is given by z = Cx 2
, where C is a constant. The

problem is to find an expression for the volume.

Volume

To check your answer, go to 383.
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383

The volume is tt Cba3
. Read on ifyou want an explanation; otherwise

1Z

go to 384.

y-axis

The base of the object forms a triange, as shown. The integral can be

carried out with respect to x andy in either order. We shall integrate first

over y.

Cx 2
y\ dx.

From the drawing, y2 = d 1— ) = -y x , so that Cx 2
y = Cx 2

b

and A a/ ' H)'

v C6
/.

2

4-f) * = C6
(I"

3
" i°1

=
T2

C6°3
-

The integral can also be evaluated in reverse order. The calculation is

simplified by making use of symmetry; the volume is twice the volume

over the upper triangle. Thus

rb/2r r x(y) n

V=2L [Jo^
2
*]*'

where x(y) = all - tA The answer is the same, "Tq
-

-

Go to 384.
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Conclusion

384

Well, here you are at the very last frame. You should get some reward

for all your effort—all we can do is promise that there is only one more
"go to" left in the book.

At this point you should understand the principles of integration and
be able to do some integrals. With practice your repertoire will increase.

Don't be afraid to use integral tables—everyone does. You can find quite

large tables in

CRC Standard Mathematical Tables, and also The Handbook of

Chemistry and Physics, CRC Press, Inc., Boca Raton, Florida.

Table ofIntegrals, Series, and Products, I. S. Gradshteyn and I. W.
Ryzhik, Academic Press, New York, 1980.

The next chapter is a review and lists in outline all the ideas presented

in the book. Even though you may have already read part ofthat chapter,

you should now study it all. You may also find it is handy for future

reference.

The appendixes are crammed full of interesting tidbits: derivations of

formulas, explanations of special topics, and the like.

In case you are a glutton for punishment or simply want a little more
practice, there is a list of review problems, along with the answers,

starting on page 245.

Go to Chapter 4.



CHAPTER FOUR

Review

This chapter is a review and concise summary of what you have
learned. Proofs and detailed explanations given in the preceding three

chapters are not repeated here; instead, references are given to the

appropriate frames. Unlike the rest of the book, this chapter has no
questions so it can be read from beginning to end like an ordinary text,

except that you may occasionally want to refer back to earlier discussion.

Review of Chapter 1

A FEW PRELIMINARIES

Functions (frames 3-13)

A set is a collection of objects—not necessarily material objects

—

described in such a way that we have no doubt as to whether a particular

object does or does not belong to the set. A set may be described by listing

its elements or by a rule.

A function is a rule that assigns to each element in a setA one and only
one element in a set B. The rule can be specified by a mathematical

formula such asy = x 2
, or by tables of associated numbers. Ifx is one of

the elements of set A, then the element in set B that the function f
associates with x is denoted by the symbol fix), which is usually read as "f
ofx."

The setA is called the domain ofthe function. The set B of all possible

values of fix) as x varies over the domain is called the range of the

function.

When a function is defined by a formula such as fix) = ax3 + b, then x is

often called the independent variable and fix) is called the dependent

variable. Often, however, a single letter is used to represent the single

variable as in

y = fix).

208
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Here x is the independent variable and v is the dependent variable. In

mathematics the symbol x frequently represents an independent vari-

able, f often represents the function, and y = fix) usually denotes the

dependent variable. However any other symbols may be used for the

function, the independent variable, and the dependent variable; for

example, x = H(r).

Graphs (frames 14-22)

A convenient way to represent a function is to plot a graph as described

in frames 15-18. The mutually perpendicular coordinate axes intersect

at the origin. The axis that runs horizontally is called the horizontal axis,

or x-axis. The axis that runs vertically is called the vertical axis, or

y-axis. Sometimes the value of the x-coordinate of a point is called the
abscissa, and the value of the y-coordinate is called the ordinate. In the

designation of a typical point by the notation (a, 6), we will always
designate the x-coordinate first and the y-coordinate second.

The constant function assigns a single fixed number c to each value of

the independent variable*. The absolute value function
I x I

is defined by

I x I
-

{

if x s* 0,

-x if x < 0.

Linear and Quadratic Functions (frames 23-39)

An equation of the form y = mx + b where m and b are constants is

called linear because its graph is a straight line. The slope of a linear

function is defined by

Slope =_JW_ =^W^.

From the definition it is easy to see (frame 29) that the slope ofthe above
linear equation is m.

An equation of the form y = ax 2 + bx + c, where a, b, and c, are
constants, is called a quadratic equation. Its graph is called a parabola.
The values ofx aty = satisfy ax 2 + bx + c = and are called the roots of
the equation. Not all quadratic equations have real roots. The equation
ax 2 + bx + c = has two roots given by

= - b ± Vb 2 - 4ac
X

2a
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Trigonometry (frames 40-74)

Angles are measured in either degrees or radians.

A circle is divided into 360 equal degrees. The number ofradians in an

angle is equal to the length ofthe subtending arc divided by the length of

the radius (frame 42). The relation between degrees and radians is

1 rad =
360°

2tt

Rotations can be clockwise or counterclockwise. An angle formed by

rotating in a counterclockwise direction is taken to be positive.

The trigonometric functions are defined in conjunction with the fig-

ure.

The definitions are y-axis

sin =—

,

r

tan =—

,

x

sec =
cos x '

cot

=— , esc =

cos =
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1

Exponentials and Logarithms (frames 75-95)

If a is multiplied by itself as aaa • • with m factors, the product is

written as am . Furthermore, by definition, arm = \la
m

. From this it

follows that

aman = am+n
,

% = am
- n

,

nm
a° = -^ = 1,

am

(a
m

)
n = amn

,

(ab)
m = ambm .

If bn = a, b is called the nth root ofa and is written as b = aVn . Ifm and n
are integers,

amln _
(a

l/»)m

The meaning ofexponents can be extended to irrational numbers (frame

84) and the above relations also apply with irrational exponents, so

(a
x
)
b = abx , etc.

The definition of log x (the logarithm of x to the base 10) is

x = 10log \

The following important relations can easily be seen to apply to loga-

rithms (frame 91):

log ab = log a + log 6,

log (alb) = log a - log 6,

log an = n log a.

The logarithm ofx to another base r is written as logr x and is defined

by

x = r
lo«r *.

The above three relations for logarithms of a and b are correct for

logarithms to any base provided the same base is used for all the log-

arithms in each equation.

A particular important base is r = e = 2.71828 ... as defined in frame
109. Logarithms to the base e are so important in calculus that they are
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given a different name; they are called natural logarithms and written as

In. With this notation the natural logarithm of x is defined by

If we take the logarithm to base 10 of both sides of the equation,

log e
ln x = log x

,

In x log c = log x

,

In * = {?££
loge

Since the numerical value of 1/log e is 2.303 . . .,

In x = (2.303 . . .)log x

Review of Chapter 2

DIFFERENTIAL CALCULUS

Limits (frames 97-115)

Definition of a Limit: Let fix) be defined for all x in an interval about

x = a, but not necessarily atx = a. Ifthere is a numberL such that to each

positive number e there corresponds a positive number 5 such that

I fix) - L I
< £ provided < I x - a I <5,

we say that L is the limit of fix) as x approaches a, and write

lim/Xx) - L.
x-*a

The ordinary algebraic manipulations can be performed with limits as

shown in Appendix A2; thus

lim[FU) + Gix)] = Mm Fix) + limGW.

Two trigonometric limits are of particular interest (Appendix A3):

,. sin , , ,. 1-cosfl nlim—r— =1 and hm r— = 0.
«-»0 V 8-»0 V
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The following limit is ofsuch great interest in calculus that it is given the

special name e, as discussed in frame 109 and Appendix A8:

e = lim(l + x)
Vx = 2.71828 . . .

x-»0

Velocity (frames 116-145)

Ifthe function S represents the distance from a fixed location ofa point

moving at a varying speed along a straight line, the average velocity v

between times tx and t2 is given by

S2 — Si
v = —*

-,

t2 - ti

whereas the instantaneous velocity v (frame 133) at time tx is

. . S2 — Si
v = hm — —

.

h-'h t2 — ti

This equals the slope at time t x of the curve ofS plotted in terms of time
(frame 131). It is often convenient to writeS2 - Si = ASand£2 -*i = at, so

.. AS
v = hm —

.

a«-»o at

Derivatives (frames 146-159)

Ay
If y = fix), the rate of change of y with respect to x is lim j*. The

Ax-»0 AX
Ay

lim 7^ is called the derivative ofy with respect to jc and is often written
&x-*o Ax

dy
as -r (sometimes it is written y'). Thus

dx

y
, =^ =lim fj= iim ^-a = hmfeWM

OX Ar-»0 aX Xz-»*i X2 — X\ *z-*Xi X2 — X\

dy
is the derivative ofy with respect to x. The derivative -£ is equal to the

slope of the curve of y plotted against x.

Graphs of Functions and Their Derivatives (frames 160-169)

From a graph of a function we can obtain the slope of the curve at

different points, and by plotting a new curve of the slopes we can de-
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termine the general character and qualitative behavior ofthe derivative.

See frames 160-169 for examples.

Differentiation (frames 170-241)

From the definition of the derivative, a number of formulas for differ-

entiation can be derived. We will review just one example here: the

method is typical. Let u and v be variables that depend on x.

d(uv) ,. A (mi;) ,. (u + At/)(u + Au) - uv—j— = lim—r— = lim t
OX Ar-0 AX Ar-0 Ax

d(uv) .. uy + uAu + uAu + AuAu-uu
J = "m Aax ai-o Ax

,. Au, ,. Au, ,. Au Au= u lim^—I- y hm^— + hm-
A*--oAx Ai—oAx Ax-»0 Ax

dv, du.f.
ax ax

The important relations which you should remember are listed here.

There is a more complete list in Table 1, page 254. In the following

expressions u and v are variables that depend on x, w depends on u, which

in turn depends on x, and a and n are constants. All angles are measured

in radians.

Frame

^=0 172
ax

|(«*)=a 174

g%- = nxn
~x 180

ax

d , , du.dv 1Qfl

dx
{u + v)=

dx
+
dx

186

a" , v dv . du - Qa
dlc

{uv) = U
dx

+ V
dx

189

—(—^=— ( — _ —

^

1«4
dx\ v I v

2
\ ax ax/

dw_dwdu
dx du dx

198
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211

212

226

235

In the above list e = 2.71828 . . . and In x is the natural logarithm ofx

defined by In x = loge x.

More complicated functions can ordinarily be differentiated by apply-

ing several of the rules in Table 1 successively. Thus

#(x3 + 3x 2 sin2x)=# + 3^sin2x + 3x 2 -
dsin2*

d sin x

dx
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Differentials (frames 262-272)

Ifx is an independent variable and v = fix), the differential dx ofx is

defined as equal to any increment, x2 - x x , where Xi is the point of

interest. The differential dx can be positive or negative, large or small, as

we please. Then dx, like x, is an independent variable. The differential dy

is then defined by the following rule:

dy = y' dx.

wherey ' is the derivative ofy with respect to x. Although the meaning of

Ay
the derivative, y

'
, is lim -r1 , we see that it can now be interpreted as the

ratio of the differentials dy and dx. As discussed in frames 265 and 266,

dy is not the same as Ay, though

lim 4-1.
<k=Ax-o Ay

The differentiation formulas can easily be written in terms of dif-

ferentials. Thus ify = xn ,

dy = dix
n
) = ^ (*") dx - nx"'1

dx.

A useful relation which is implied by the differential notation and

discussed further in Appendix A10 is

dx 1

dy dyldx
'

Review of Chapter 3

INTEGRAL CALCULUS

The Area under a Curve (frames 290-299)

If A(x) is the area under the curve defined by y = fix), then

dA(x)

dx
-A'Cx) = fix).

To find A(x) for a given fix), we then need to find a function whose

derivative is equal to fix). The process of finding a function whose
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derivative is another function is called integration or antidiferrentiation

and is the subject of the following sections.

Integration (frames 300-308)

The antiderivative Fix) of the function ofx is most frequently written

in the form

Fix) = / fix) dx.

Fix) is usually called the indefinite integral offix). Since the derivative of

a constant is zero, any arbitrary constant c can be added to an indefinite

integral and the sum will also be an indefinite integral of the same
function fix). It is important not to omit this constant. Otherwise the

answer is incomplete.

Indefinite integrals are often found by hunting for an expression

which, when differentiated, gives the integrand fix). Thus from the

earlier result that

d cos x = -sin x

we have that

dx

sin x dx - -cos x + c.

By starting with known derivatives as in Table 1, a useful list of

integrals can be found. Such a list is given in frame 306 and for con-

venience is repeated in Table 2. You can reconstruct the most important

of these formulas from the differentiation expressions in Table 1. More
complicated integrals can often be found in large tables, such as those

listed in the references on page 207.

Some Techniques of Integration (frames 309-325)

Often an unfamiliar function can be converted into a familiar function
having a known integral by using a technique called change ofvariable
which is related to the chain rule ofdifferentiation and uses the relation

J
wiu) dx = j \wiu) -f\dx.
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Another valuable technique is integration by parts, as described by

the relation proved in frame 318.

j u dv = uv -
J

v du.

Frequently a number ofdifferent integration procedures are used in a

single problem as illustrated in frames 323-325.

More on the Area under a Curve (frames 326-333)

The area Aix) under a curve defined by the relation y = fix) can be

written as

Aix) = Fix) + C,

where Fix) is any particular antiderivative offix) and C is an arbitrary

constant. Ifwe want to know the area bounded by x = a and some value x,

the constant c can be evaluated by noting that the area is zero ifx = a, so

Aia) = Fia) + C =

and C = -Fia). Therefore,

Aix) = Fix) - Fia).

The area under the curve between x = a and x = b is then

Aib) = Fib) - Fia) = Fix) I*

16

where the symbol Fix) I by definition equals Fib) - Fia).

Definite Integrals (frames 334-352)

An alternative expression for the area A under a curve fix) between

x = a and x = b can be found by dividing the area into N narrow strips

parallel to they-axis, each ofarea fix t) Ax, and summing the strips. In the

limit as the width of each strip approaches zero, the limit of the sum
approaches the area under the curve. Thus (frame 339),

N
A = lim 2 A*«) Ax.

Such a limit is so important that it is given a special name and symbol. It
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is called the definite integral and is written [ fix) dx. Hence by defini-

tion.

\fix) dx = lim 2 f(Xi) Ax.

sion, we see thj

A = \jix) dx.

;he area can als<

Fix) = j fix) dx,

As a result of this discussion, we see that

However, we have seen that the area can also be evaluated in terms ofthe

indefinite integral,

by

A = Fib) - Fid) = Fix)
|

&
=

f fix) dx I*.

Therefore, by equating the two expressions for A, we have the general

evaluation of the definite integral in terms of the indefinite integral.

ffix) dx = Fix)
\

b
=

f fix) dx
\

b
.

Ja' \a J \a

This result is often called the fundamental theorem of integral calculus.

Numerical Integration (frames 353-358)

When it is not possible to find an analytic expresion for an integral, the

indefinite integral is often evaluated by methods of numerical integra-

tion. A particularly effective method is Simpson's rule in which the

entire interval over which the integral is to be evaluated is divided into

an even numberN of equal intervals of width A. By Simpson's rule the
numerical value of the integral is approximately given by

Ja y d* =
3 {y° + 4^ + 2^2 + 4v3 + 2y4 + • • • + 2yN_ 2 + 4y^_ x + yN )

The accuracy ofthe approximation can be increased by increasingN with
a corresponding decrease in A, but with a corresponding increase in

numerical work.

Some Applications of Integration (frames 359-374)

Ifwe know vit), the velocity ofa particle as a function of t, we can obtain
the position of the particle as a function of time by integration. We saw
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earlier that

dSv=
di

so

dS = vdt

and ifwe integrate both sides ofthe equation from the initial point (t = t ,

S = 0) to the final point {t, S), we have

S = f vdt.

Applications of integration in finding volumes of symmetric solids are

given in frames 366-374.

Multiple Integrals (frames 375-383)

Multiple integrals may be defined for an arbitrary number of in-

dependent variables. We discuss two variables since the procedures for

an arbitrary number are merely generalizations of those that apply to

two independent variables. The double integral over a regionR in the x-y

plane of the function f(x, y) is defined as

ITflx, y) dA = lim 2 ft*u yd AA„

as discussed in frame 376. The double integral can often be evaluated in

terms of the iterated integral:

b r ty2(x)

lf(x,y)dA =
Sa [f;;x) f(x,y)dy]dx

Conclusion (frame 384)

You are now finished. Congratulations! You don't need to do any more
work to complete this book. However, ifyou skipped some ofthe proofs in

Appendix A, we suggest you read them now. You may also want to study

some ofthe additional topics that are described in Appendix B. Finally, if

you would like to have some more practice, you should try some of the

review problems starting on page 245.

Good luck!
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Derivations

In this appendix derivations are given of certain of the formulas and
theorems not derived earlier.

Appendix Al
TRIGONOMETRIC FUNCTIONS OF SUMS OF ANGLES

A formula can easily be derived for the sine ofthe sum oftwo angles,

and 4>, with the aid of the drawing in which the radius of the circle is

unity.

sin(0 + <f>)
= AD = FE + AG
= OF sin + AF cos

= sin 6 cos 4> + cos 6 sin <j>.

In a similar fashion with the same figure,

cos(0 + <f>)
= OD = OE-DE
= OF cos - AF sin 6
= cos cos <f>

- sin sin <f>.

221
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Appendix A2
SOME THEOREMS ON LIMITS

In this appendix we shall prove several useful theorems on limits.

These theorems will show that the usual algebraic manipulations can be

done with expressions involving limits. We shall show, for example, that

lim[F(x) + Gix)] = limFOc) + limGOc).
x-»o x-*a «-»o

Although such results are intuitively reasonable, they require a formal

proof.

Before deriving these theorems, we need to note some general proper-

ties ofthe absolute value function introduced in frame 20. These proper-

ties are

I a + b I
«

I a I
+

I 6 I, (1)

I ab I
=

I a I
x | 6 |. (2)

It is easy to see that these relations are true by considering in turn each of

all the possible cases: a and b both negative, both positive, of opposite

sign, and one or both equal to zero.

We are now ready to discuss theorems on limits which apply to any two

functions F and G such that

limF(x) = L and limGOc) = M.
x-»a *-»a

Theorem 1

lim[F0c) + G(x)] = Urn Fix) + limGOc).
x—>a x—»a x-»a

Proof: By Equation (1),

I Fix) + Gix) - (L + M) I
-

I [Fix) -L] + [Gix) - M\ I

« \Fix)-L I
+

I Gix)-M I.

Using the definition of the limit (frame 105) we see that for any positive

number c we can find a positive number 5 such that

I Fix) - L I < | and I Gix) - M I <
|

provided <
I
x - a I

< 8. (At first sight this may appear to differ from

the definition ofthe limit since the symbol e instead ofe/2 appeared there.

However, the statements apply for any positive number and c/2 is also a

positive number.)
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The above equations may be combined to give

I Fix) + Gix) -CL + M)!<!+J=€.

Therefore, by the definition of the limit in frame 105,

lim[F(x) + G{x)] = L + M = limF(jc) + limGOt).
x-*a «-»o *-»a

Theorem 2

lim[F(x) Gix)] = [HmF(x)] [limGGc)].
x-»a x—»a x-*a

Proof: The proof is somewhat similar to the preceding. By writing out all

the terms, we can see that the following is true identically:

Fix) Gix) -LM = [Fix) - L] [Gix) - M] + UGix) -M] + M\Fix) - L\.

Therefore, by Equation (1),

I Fix) Gix) - LM I

*£
I [Fix) - L] [Gix) - M] I

+
I L[Gix) - M] I + I M[Fix) - L] \.

Let € be any positive number less than 1. Then by the meaning of limits

we can find a positive number 5 such that if <
I x — a I < 8,

|F(x)-L|<|, \UGix)-M\ I <|, \M[Fix)-L]\ <|,

and

Then

Gix) -M I <|.

|F(x)G(x)-LAf|<^ +
|
+
|
= ^

2

+ |^| + | =
|

€
,

where the next to the last step arises as a result ofour earlier restriction

toe < 1.

Consequently,

I Fix) Gix) -LM I
< c

so by the definition of the limit,

lim[F(x) Gix)] = LM = [limFOt)] [limG(jc)].
x-*a x-*a x-»a
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Theorem 3

F(x)
Urn Fix)

]l
m

GOe) limGGt)
provided lim G(x) # 0.

Proof: Since lim G(x) ± 0, we can select a value of 5 sufficiently small
x—»a

that G(x) ± for <
I x - a I

< 8. Then we can write

limFOc) = lim
f
G(xr

F̂ r 1 = lim G(x) lim ^4
F(x)= Af lim
Gix)

where M = lim G(x).
x-*a

Therefore, since M + 0, we have

„, limFOt) \\mF(x)

x-»a G(x) M limGW

Note that ifM = this expression is meaningless and we must evaluate

Fix)——. before taking the limit.
G(x)

Appendix A3
LIMITS INVOLVING TRIGONOMETRIC FUNCTIONS

1. Proof that

,. sin 6 .,

lim —-— = 1.
0-0 V

To prove this, draw an arc ofa unit circle as shown such thatAB = AE = 1

and 8 = LEAB. Geometrically it js apparent that area ADEj* area

ABE s* ABC. Therefore % (AE) (J)E) s* area ABE s* V2 (AC) (BO. (The

symbolAE represents the length ofthe straight line segment betweenA
andE.)

Since the area of the circle is it, we have

a

Area ABE = ir =-
Z7T i*
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Using the fact that DE = tan 0, we obtain

V2 tan & V2 2s y2 cos sin 0.

Dividing through by V2 sin yields

1 _ e

cos sin
cos 0.

Take the reciprocals of this expression. Since the reciprocal of a large

number is smaller than the reciprocal ofa small number (providing both

numbers are positive), this operation reverses the order ofthe inequality:

. _ sin _ 1
cos «s

So

and

cos 0'

lim cos ss lim—-— =£ lim
9-.0 9—0 e-»o cos

1 « hm—s— «£l.
e-*o a

Therefore,

2. Proof that

,. sin ,hm —a— — 1-
e->o

, . 1 - COS nlim 7 = 0.
0-0

This can be proved as follows:

(1 - cos 0X1 + cos 0) _ 1 - cos
2

1 - cos v
l + cos 1 + cos

Sin
2 _ . 2 a e r\ -- a ^ w

sin
z

for =£ < -
1 + cos 6 2
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Therefore in this limit

1 - cos fl^ sin
2

-

We then have

lim^rM lim^)( limsin*) = l x =
9-0 \ 9-0 I \ 9-0 /

But for all positive 0, =s .
. Hence,

V

n _ ,. 1 - cos „ n
«£ hm -z =s0.

9-0

The only way to satisfy both of these conditions is for

, . 1 - cos nhm = 0.
9-0

Appendix A4
DIFFERENTIATION OF xn

Consider first the case of n a positive integer.

y + Ay = (x + Ax)".
(1)

The right side can be expanded by the binomial theorem (ifyou are not

familiar with this, look it up in any good algebra text) to give

y + Ay = (jc + Ax)"

= x" + nxn
' 1 A* +

n(".~
2

1)
x"~ 2 Ax 2 + • • • + Ax". (2)

Ifwe subtract Equation (1) from Equation (2) and divide by Ax, we have

^=nx-1 +^f^x- 2 Ax + • • • + Ax-1
.

Ax 1-2



Derivations 227

Therefore,

, = lim -rL = nxn
-1

.

dx ix-oAx

Although the above theorem has been proved only for n being a

positive integer, we can also show it is true for n = \lq where q is a

positive integer. Let

y = xv"

so

x = y
q

.

By the preceding theorem, then,

dx __!

But by Appendix A 10,

dx dxldy q^ q
y

q
K

'

ay = J_
dx q

We can further see that this theorem holds for n = plq where p and q
are both positive integers.

y = xn = xP
1
".

Let

w = xVq

so

y = uf.

Then

ax au> ax
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So far we have seen that the rule for differentiating x" applies if n is

any positive fraction. We will now see that it applies for negative frac-

tions as well. Let n = -m, where m is a positive fraction. Then

d(xn ) d(x-m) d { 1 \ dxmldx
dx\xm ldx dx dx\xm ! (x

m
)
2

T^- = (-m)x-m
-1 = nxn

Up to now our discussion applies ifn is any rational number. However,
the result may be extended to any irrational real number by the methods
used in frame 84. Therefore, for any real number n, whether rational or

irrational, and regardless of sign,

d(x
n
)= nx

dx

Appendix A5
DIFFERENTIATION OF TRIGONOMETRIC FUNCTIONS

From Appendix Al,

d sin 9 _ ,. sin(e + Afl)-sin

dd a 9-»o A0

, . sin 6 cos A 6 + cos sin A - sin 6= nm T^
A9-»0 A0

n , . cos A 6 - 1
,

_ , . sin A 6= sin 6 lira t-z + cos 6 hm—t-z—

.

iff-o At/ A»-»o A0

The two limits were evaluated in Appendix A3 as and 1, respectively, so

d sin 8

—d0—
= C030 -
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Likewise,

d cos _ ,. cos(fl + Afl) -cos
a"0 A 9-0 A

.. cos cos A - sin 8 sin A - cos
= hm 7-5

. .. cos A - 1 . _ .. sin A0
= cos hm 7-3 sin hm —7-3—

A 0-0 A0 A 9-0 A0

Derivatives of other trigonometric functions can be found by expressing

them in terms of sines and cosines, as in Chapter 2.

Appendix A6
DIFFERENTIATION OF THE PRODUCT OF TWO FUNCTIONS

Let y = uv, where u and v are variables which depend on x. Then

y + Ay = (u + Au)(u + Ay) = uv + u Ay + v Au + Au Ay.

Then

dy (y + Ay)-y ,. (uy + uAy + yAu + AuAy)-uy
j =lim 7 = hm 7—
OX Ax-0 AX Ax-0 Ax

i- / Ay
,

Au . . Ay
= hm u-r- + y-r— + Au-7—
Ax-o \ Ax Ax Ax

But

limAu^=(limAu)x(lim^)=Ox-^ = 0,
Ax-.o Ax \ a*— / Vax-oAx/ ax

where we have used Theorem 2 of Appendix A2. Thus

ay ,. Ay
,

,. Au dv
,

du
^f-=u hm -r— + y hm -7— = iiT + iiT.
ax a*-oAx a*—oAx ax Ox
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Appendix A7
CHAIN RULE FOR DIFFERENTIATION

Let w(u) depend on u, which in turn depends on x. Then

Au> = w(u + Au) - w(u)

so

Au)_ Au;Au _ w{u + Au) - w(u) Au
Ax AuAx Au Ax'

Therefore, using Theorem 2 of Appendix A2, we have

ax Ax-.oAx ai-.oAuax-.oAx \aul\dx)

Appendix A8
DIFFERENTIATION OF In x

Let

Then

v = In x,

y + Ay = ln(x + Ax).

Ay _ y + Ay - y _ ln(x + Ax) - In x

Ax Ax Ax

From frame 91,

M = 1
ln
(£jLA£) =XJL ln

(
1 +

Ax|
Ax Ax \ x / x Ax \ xl

= ^-ln(l +
A^p t

=^-ln(l + /)
1/'

X \ X / X
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Ax
where we have written /for — . Note that as Ax -* 0, /

—* 0. Therefore,
x

& = lim ±2= Um |:

OX Ax— AJC Ax— [I

= -lnflim(l + l)
vl

]

= - In e = -
x x

since In e = loge e = 1.

Appendix A9
DIFFERENTIALS WHEN BOTH VARIABLES DEPEND

ON A THIRD VARIABLE

The relation dw = -r du is true even when both w and u depend on a
du

third variable. To prove this, let both u and w depend on x. Then

dw = -r dx and du = -j- dx. (1)
dx dx

By the chain rule for differentiating,

dw _ (dw\ldu\

dx \du)\dxy

and multiplying through by dx, we have

so by Equation (1),

dw = ~r du.
du

This theorem justifies the use of the differential notation since it

shows that with the differential notation the chain rule takes the form of

an algebraic identity

dw _ dw du
dx du dx
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Appendix A10

PROOF THAT ^~
dx dxldy

If a function is specified by an equation y = fix), it is ordinarily

possible, for at least limited intervals of x, to reverse the roles of the

dependent and independent variables and to allow the equation to de-

termine the value ofx for a given value ofy. (This cannot always be done

as in the case of the equationy = a, where a is a constant.) When such an

inversion is possible, the two derivatives are related by

dy = 1

dx dxldy

'

This relation can be seen as follows:

^ = iim^= ijm 1 1

dx Ax-oAx ax-o Ax/Ay lim (Ax/Ay)
Ax—0

Ay
by the limit theorems of Appendix 2. Furthermore, if lim r* =£ 0, thenJ rr Ax-oAx

Ay —* as Ax —* 0, so

dy 1 l

dx lim (Ax/Ay) dxldy'
Ar-»o

This result is a further justification of the use of differential notation

since normal arithmetic manipulation with differential notation im-

mediately gives

dy _ 1

dx dxldy

'

Appendix All
PROOF THAT IF TWO FUNCTIONS HAVE THE SAME
DERIVATIVE THEY DIFFER ONLY BY A CONSTANT

Let the functions be f and g.

Then
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SO

£[/w-«w]-o.

Therefore

fix) - gto) = C

where C is a constant. , ,,,

This proof depends on the assumption that if —-3— = 0, then A(x) is

a constant. This is indeed very plausible since the graph of the function

h(x) must always have zero slope and hence it should be a straight line

parallel to the origin, i.e., h(x) = C. A more complicated analytic proof of

this theorem is given in advanced books on calculus.
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Additional Topics

This appendix gives brief discussions of some additional topics in cal-

culus.

Appendix Bl
IMPLICIT DIFFERENTIATION

Most of the functions we use in this book can be written in the simple

form y = fix), but this is not always the case. Sometimes we have two
variables related by an equation of the form fix, y) = 0. [fix, y) means
that the value of f depends on both jc and y.] Here is an example:

x 2
y + (y + x)

3 = 0. We cannot easily solve this equation to yield a result of

the form y = gix), or even x = hiy). However, we can findy ' by using the

following procedure.

Differentiate both sides ofthe equation with respect to x, remembering
that y depends on x.

| (x2y) + |(y + x)3 =| ( )
= 0)

* 2^ + 2*y + 3(y + Jc)
2 (^+l) = 0,

^[(x 2 + 3(y + x)
2
] = -2*y-3(y + x)

2
,

dy = _ 2jcv + 3(y + x)
2

dx x* + 3(y + x)
2 '

A function defined by fix, y) = is called an implicit function since it

implicitly determines the dependence ofy on x (or, for that matter, the

dependence of x on y in case we need to regard y as the independent

234
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variable). The process we havejust used, differentiating each term ofthe

equation fix, y) = with respect to the variable of interest, is called

implicit differentiation.

Here is another example of implicit differentiation. Let x 2 + y
2 = 1.

The problem is to findy ' . We will do this first by implicit differentiation,

and then by solving the equation for y and using the normal procedure.

By differentiating both sides of the equation with respect to x, we
obtain

2x + 2y y' = 0.

Hence,

, __ _ 2x = _x
y

2y y

Alternatively, we can solve for y.

y»«l-** y = ^ Vl - x 2
,

( -2* »M--y -\VT^J 2) vTT

We did not need to use implicit differentiation here since we could

write the function in the form y = fix). Often, however, this cannot be

done, as in the first example, and implicit differentiation is then neces-

sary.

Appendix B2
DIFFERENTIATION OF THE INVERSE

TRIGONOMETRIC FUNCTIONS

1. Evaluation of -j- (sin * x).
ax

The angle 6 is shown inscribed in a right triangle having unit

hypotenuse, and an opposite side of length x. Therefore, sin 6 = x/1 = x
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and 8 = sin
-1

x. Differentiating the first expression with respect to x

yields.

d sin g
dx

= 1.

Using the chain rule, we have

Then,

d
i /« d

I rt de a dd 1
-r (sin 0) = -r= (sin 6) -j- = cos -=- = 1.
ax a0 ax ax

-j-

=

-j- (sm x) = t.
ax ax cos

We can substitute the value cos = V1 - x 2
to obtain our final result:

d . . _i s. 1- (sin x>-^—

Note that we must take the sign of Vl - x 2
to agree with that of cos 6.

2. Evaluation of -r- (cos
-1

x).
dx

Using the triangle shown and the above procedure, we have

x = cos 6

6 - cos
-1

x

ic
{cosd) = 1

> ^ (cos0)
al
=1

'
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3. Evaluation of -j- (tan * x).
dx

In the triangle shown, tan = x, so that = tan l
x.

But

So

£(tan*) = J*(tan4* = l.

-7-: (tan 0) = sec
2

0.

dd 1 2 . 1
:

= ^^-3= cos e =
dx sec

d_

dx 1 + x'

1+ X'

4. Evaluation of -j-(cot * x).
ax

Here cot 6 = x, so that = cot
1
x.

4- (cot 9) = ^ (cot « ^ = 1.
ax dd dx

But

^(cot 0) = -esc 2
0,
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d6
dx

1— — 5
cscr

-j- (cot
-1

jc) = t~t
—

idx 1 + x

:
= -sin 2

6 =
-1

1 + x 2 '

Appendix B3
PARTIAL DERIVATIVES

In this book we have almost exclusively considered functions defined

for a single independent variable. Often, however, two or more in-

dependent variables are required to define the function; in this case we
have to modify the idea of a derivative. As a simple example, suppose we
consider the area ofa rectangle A, which is the product of its width w and
length /. Thus,A = f(l, w) (read "foil and w"), where f(l, w) is here / x w.

In this discussion we will let / and w vary independently, so they both can

be treated as independent variables.

1



Additional Topics 239

dA
written -p In other words the partial derivative is defined by

dA = df(l, w) _ f(l + M,w)-f{l,w)
dl dl a/-.o Al

In our example,

Similarly,

dA _ (1 + Al) x w-l x w
dl a;—o Al

dA .. f(l, w + Aw) - f(l, w)
-r— = hm
aW Aw->0 Aw

.. I x (w + Aw)-l x w ,= hm t = I.
Aw—O AW

The differential ofA due to changes in I and w ofdl and dw , respective-

ly, is by definition

dA = -j-dl + — du>.
dl dw

By analogy with the argument in 266, it should be plausible that as

dl^*0, the increment in A, AA = f(l + A I, w + A w) - f(l, w), approaches
dA.

w dl rdl

Idw

This result is shown by the figure. AA is the total increase in area due
to dl and dw and comprises all the shaded areas.
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dA = -r dl + — dw = w dl + I dw
dl dw

AA and dA differ by the area of the small rectangle in the upper right-

hand corner. As dl -* 0, dw -* 0, the difference becomes negligible

compared with the area of each strip.

The above discussion can be generalized to functions depending on any
number of variables. For instance, let p depend on q, r, s, . . . .

dq dr ds

Here is an example:

p = q*r sin z

?- = 2qr sin z
dq

H

dp o •

•it — Q sin z
dr

H

dp o
-f- = q r cos z
dz

dp = 2qr sin z dq + q
2
sin z dr + q

z
r cos z dz.

Here is another example:

The volume of a pyramid with height h and a rectangular base with
dimensions I and w is

V = | Iwh.
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Thus,

dV = 5 wh dl + = Ih dw + ~ Iw dh.

If the dimensions are changed by small amounts dl, dw, and dh, the

volume changes by an amount AV = dV, where dV is given by the

expression above.

Appendix B4
DIFFERENTIAL EQUATIONS

Any equation which involves a derivative of a function is called a

differential equation. Such equations occur in many different applica-

tions of calculus, and their solution is the subject of a lively branch of

mathematics. Here are two examples to show how a differential equation

can occur.

The Growth of Population

Suppose we let n represent the number of people in a particular

country. We assume that n is such a large number that we can neglect the

fact that it must be an integer and treat it as a continuous positive

number. (In any application we would eventually round off n to the

nearest integer.) The problem is this: Assume the birthrate is pro-

portional to the population so nA children are born every year for every n

people.A is the constant ofproportionality. Ifthe initial population ofthe

country is n people, how many people are there at some later time, 7
1

? (In

this simple problem we will neglect deaths.)

If there are n people, the total number ofchildren born per year is nA.

This is the rate of increase of population. That is,

dn .

dt
=nA -

The above differential equation is a particularly simple one. We can

solve it by integration in the following manner:

^ = A dt.
n

Let us take the definite integral of both sides of the above equation.

Initially we have t = and n = n , and finally t = T and n = n(T). Thus

fn(T) dn fT
f — = f A
in n Jo

dt.
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The integral on the left should be familiar (ifnot, see Table 2, integral

5). Evaluating both integrals, we have

In n(T) - In n = A(T - 0)

or

n

This equation is in the form In x = AT, where we have set x = n(T)/n .

We can solve this forx by using the relation e
ln x = x. Thus, x = e

lnx = e
AT

,

and we have

n

This expression describes the so-called exponential increase of popula-

tion. Expressions of similar form describe many processes which are

mathematically similar, for instance, the growth ofmoney in banks due

to interest or the radioactive decay of atomic nuclei.

Oscillatory Motion

As a second example ofa differential equation, consider the motion ofa

particle in one dimension. It is sometimes possible to define the motion of

the particle by a differential equation. For example, let jc be the coordin-

ate of the particle relative to the origin. Suppose we require that the

position x of the particle satisfies the following differential equation:

d*x

dt̂f
- -kx. (1)

(This particular equation describes the motion of a pendulum, or of a

particle suspended by a spring.)

The problem is to find out how x varies with time when it obeys this

equation. This can be found by "solving" the differential equation. One of

the most powerful means for solving differential equations is to guess a

possible general form for the answer. Then this general form is sub-

stituted in the differential equation and one can both see that the equa-

tion is satisfied and determine any restrictions that should apply to the

solution.

First, what is a promising guess as to a solution? Note that * must
depend upon time in such a way that when it is differentiated twice with
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respect to time it reverses sign. But this is exactly what happens to the
j j2 j

sine function since -Hsin x) = cos x, and -r-s (sin x) = -j-(cos x) = - sin x
dx dx 2 dx

(frame 212). Therefore, let us try

x = A sin(bt + c),

where A, b, and c are undetermined constants.

This may be differentiated twice with respect to time with the result

dx
j- = Ab cosibt + c),
at

^ = -Ab 2
sinibt + c).

dt
z

If these relations are substituted in Equation (1), we have

-Ab 2
sinibt + c) = -kA sinibt + c).

The differentiated equation is then satisfied for all t provided

b
2 = k.

(Alternatively, the equation is satisfied by A = 0. However, this leads to

a trivial result, x = 0, so we disregard this possibility.) Thus the solution

is

x = A sin(V^ t + c)-

Although the constant k is given by Equation (1), the constants A and c

are arbitrary. If the position x and the velocity dxldt were specified at

some initial time, t = 0, the arbitrary constants could be determined.

Note that the solution we have found corresponds to x oscillating back

and forth indefinitely between x = A and x = -A . This type of oscillatory

motion is characteristic of a pendulum or of a particle suspended by a

spring, so that the original differential equation really appears to de-

scribe these systems.

Appendix B5
SUGGESTIONS FOR FURTHER READING

Calculus with Analytic Geometry, 2d ed., Howard Anton, Wiley, New
York, 1984.
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Calculus, Dennis Berkey, W. B. Saunders & Co., Philadelphia, Pa., 1984.

Calculus and Analytic Geometry, C. H. Edwards, Jr., and David E.

Penny, Prentice-Hall, Inc., Englewood Cliffs, N.J., 1982.

Calculus with Analytic Geometry, 2d ed., Robert Ellis and Denny Gulick,

Harcourt Brace Jovanovich, San Diego, Calif., 1982.

Elements of Calculus and Analytic Geometry, 6th ed., Ross Finney and
George Thomas, Addison-Wesley Publishing Co., Inc., Reading, Mass.,

1984.

AppliedNumerical Analysis, Curtis F. Gerald, Addison-Wesley Publish-

ing Co., Inc., Reading, Mass., 1978.

Calculus, 3d ed., Stanley Grossman, Academic Press, New York, 1984.

Calculus, 2d ed., Robert E. Larson and Robert P. Hostetler, D. C. Heath,

Lexington, Mass., 1981.

Calculus with Applications to Business and Life Sciences, 2d ed., Abe
Mizrahi and Michael Sulliven, John Wiley & Sons, New York, 1984.

Calculus, 4th ed., Edwin J. Purcell and Dale Varberg, Prentice-Hall,

Inc., Englewood Cliffs, N.J., 1984.

Calculus with Analytic Geometry, Earl Swokowski, PWS Publishers,

Boston, Mass., 1982.



Review Problems

This list of problems is for benefit in case you want some additional

practice. The problems are grouped according to chapter and section.

Answers start on page 251.

CHAPTER 1

Linear and Quadratic Functions

Find the slope of the graphs of the following equations:

1. y = 5x - 5

2. 4y - 7 = 5x + 2

3. 3y + Ix = 2y - 5

Find the roots of the following:

4. 4x2 -2x-3 =

5. x2 - 6x + 9 =

Trigonometry

ji „ ji

6. Show that sin 6 cot 0/V1 - sin2 d =1, (--<0<

7. Show that cos 6 sin(^ + 0) - sin cosl^ +
0J

= 1.

8. What is: (a) sin 135°, (b) cos -£, (c) sin ^?
4 6

1
9. Show that cos

2 - = ^d + cos 0).

10. What is the cosine of the angle between any two sides of an

equilateral triangle?

245
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Exponentials and Logarithms

11. What is (-1)
13
?

12. Find [(0.01)
3]"1 '2

.

13. Express log (x*)* in terms of log x.

14. If logdog x) = 0, find x.

15. Is there any number for which x = log x?

In the following five questions, make use of the log table below and the

rules for manipulating logarithms.

Find

16. log VlO"
17. log 21

18. log Vl4
19. log 300
20. log 7

3/2

X
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25. lim [ (2 + x)
(* ^ + 7 1

x-»3 L X — o J

x2 -!
26. lim

r.1 X- 1

27. lim—

28. lim log x

Ve/ocify

29. What is the average velocity ofa particle that goes forward 35 miles

and backward for 72 miles, during the course of 1 hour?

30. A particle always moves in one direction. Can its average velocity

exceed its maximum velocity?

31. A particle moves so that its position is given by S = S sin 27rt,

where S is in meters, t is in hours. Find its average velocity from

t = to

(a) t = lA hour (b) t = V2 hour
(c) t = % hour (d) t = 1 hour

32. Write an expression for the average velocity of a particle which
leaves the origin at t = 0, whose position is given by S = af3 + bt,

where a and b are constants. The average is from t = to the

present.

33. Find the instantaneous velocity ofa particle whose position is given

by S = bt
3

, where 6 is a constant, when t = 2.

Differentiation

Find the derivative ofeach ofthe following functions with respect to its

appropriate variable, a and b are constants.

34. y = x + x2 + x3

35. y = (a + bx) + (a + bx)
2 + (a + bx)

3

36. y = Ox2 + Ix)-
3

37. p = Va2 + q
2

38. p =
.

X

Va2 + q
2

39. y = x n
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40. f = 6
2
sin 6

., . sin 6
41. f =-T-

42. /" = (sin 0)-1

43. /"= (Vl + cos2 6)-1

44. /" = sin
2 + cos

2
©

45. y = sin(ln x)

46. y = x\n x

47. y = (In xT2

48. y = x*

(Hint: what is In y? Use implicit differentiation, Appendix B3).

49. y = a?
50. f = sin Vl + e2

51. y = e-*
2

52. y = ir
x

53. y = tt*
2

54. /" = ln(sin 0)

55. /" = sin(sin 6)

56. /" = In e*

57. /" = e
ln[ '

58. y = Vl - sin2 6

Higher-Order Derivatives

Evaluate each of the following:

d2
59. Find ^(cos ad).

60. Find -rn e°* (n is a positive integer).

61. J^^^7 **)

d2
62. -j^tan 6)

cP_

dx3

Maxima and Minima

63. -fgOcV)

Find where the following functions have their maximum and/or mini-

mum values. Either give the values ofx explicitly, or find an equation for

these values.



Review Problems 249

64. y =e~x

sin x
65. y =

66. y

67. y

x

66. y = e~* sin x

In s

68. y = e~
x \nx

69. Find whether y has a maximum or a minimum for the function

given in question 64.

Differentials

Find the differential df of each of the following functions.

70. f=x
71. f=Vx
72. f = sin x2

73. f = e
Bin x

(Hint: Use chain rule)

CHAPTER 3

You may find Table 2 on page 256 helpful in doing the problems in this

section.

Integration

Find the following indefinite integrals. (Omit the constants ofintegra-

tion.)

74. j sin 2x dx

J x + 1

76.
J
x2^ dx (Try integration by parts.)

77.
j

xe-*
2

dx

78.
j

sin
2 cos $ dd
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Some Techniques ofIntegration and Definite Integrals

Evaluate the following definite integrals.

79. J**(e* + e~
x
) dx

x dx
81.

82.

83.

84.

85.

86.

-°° Va2 + x2

o

re* dx (Problem 76 may be helpful.)

+ 7T/2

sin cos 6 dd

l

j
(x + a)

n dx

+1 dx
-1 VI - x2

, (x + x2 + x3)dx
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ANSWERS TO REVIEW PROBLEMS

1. 5

2. %
3. -7

4. (1 ± Vl3J/4
5. 3, 3 (roots are identical)

6. No answer
7. No answer

8. (a) y (b) y, (c) -y
9. No answer

10. y2
11. -1

12. 1000

13. x2 log x

14. x = 10

15. No
16. 0.50

17. 1.33

18. 0.58

19. 2.48

20. 1.28

21.

22. 1

23. No limit

24. No limit

25. 7

26. 2

27.

28. No limit

29. -37 mph
30. No

31. (a) 4S m/hr, (b) m/hr, (c) -|s m/hr, (d) m/hr,

32. a*
2 + b

33. 126

34. 1 + 2x + 3X2

35. 6 + 26(a + fa) + 36(a + fa)
2

36. S&x2 + 7s)-
4

(6jc + 7)

37.
dp q
dq Va2 + q

2
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38.
dp -q

dq (a
2 + q

2
)
3

dy „_i
39. -j-='ttx

ax

40. 4-= 20 sin + e2 cos

df cos sin
4

• d0~ ~ 2

42.
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61.
VI + x2 (1 + *2)

3/2

62. 2 sec
2
6 tan 6

63. (6 + 6x + jc
2
) e*

64. x =
65. jc = tan x (jc = 0, . . . )

66. x = tan"1
1 = 7 ± wr, n = 0, 1. 2,

67. x = e (In * = 1)

68. - = In x
x

69. Maximum
70. df = dx

dx
71. df =

2\Tx

72. df = 2x cos x2 dx
73. <#" = (cos x)e*

in x dx

74. y cos 2x

75. ln(x + 1)

76. x2ex -2xex + 2e*

77.
I*--

78. x sin
3

(9

7, 2(c
-i)

80. ?

81.

82. 2

83. V2

(1 4- a)n+1 -
84.

U U) -
,n + 1

85. 7T

86. y3
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Table 1

DERIVATIVES

The differentiation formulas are listed below. References to the appro-

priate frames are given. In the following expressions In jc is the natural

logarithm or the logarithm to the base e; u and v are variables that

depend on x; w depends on u which in turn depends on x; and a and n are

constants. All angles are measured in radians.

Frame

1. ^=0 172
ax

2. 4~ (ox) = a 174
ax

3. ^f- = nxn
-1 180

ax

5
- &uv)~ u%+ v

i£
189

„ dw _ dw du
| gg

dx du dx

du" n_i (—j— = nu jdx dx
^j-=nun-ld

jz FromEqs.
(3) and (7)

254
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9. -^L = l- 226
dx x

10. 4fL = e* 235
dx

11. ^£ = aMna 234
ax

, n duv o-idu
, v , du

12. ^ =^ 1^+"u lnu^

13
djMX = cosx 2n
ax

, . d COS X 9.9
14. —j = -sinx *1*

ax

15. ^g^ = sec
2 x 213

16.
d-^££ = secxtanx 214
dx

, _ d cot X 2
17. —^ = -esc* x

dx

18. ° 8
|?

~ J = ,

X
, (Appendix B2)

19. ^ C?" 1

* = ~y
~*

5 (Appendix B2)

d sin l x
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Table 2

INTEGRALS

In the following u and v are variables that depend on jc; w is a variable

that depends on u which in turn depends on x; a and n are constants; and

the arbitrary integration constants are omitted for simplicity.

a dx = ax

af(x) dx = a j fix) dx

(u + v)dx=\udx+\vdx

xn dx^f—v n*-\
n + 1

dx
,— = In x

x

e* dx = e
x

e
ax dx=—

a

If*
b
ax dx =

a In b

lnxdx = x\nx-x

sin x dx = -cos jc

cos x dx = sin x

tan x dx = -ln(cos x)

cot x dx = ln(sin x)

sec x dx = ln(sec x + tan x)

j 1 • 2
sin jc cos jc ax = ~ sin jc

dx 1 . _i x=— tan —
+ x2 a a

dx -i x—--=sin —
Va2 - jc

2

dx

Vx2 ± a2
ln(jc - Vx2 ± a2}

u»(u) dx =
J

u;(m) j- du

u dv — uv — \ v du
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References are bypage number. A separate index ofsymbols can be found on page
261.

Abscissa, 7.

Absolute value function, 9.

Acceleration, 127.

Angles, 20, 210.

Answers to review problems, 251.

Antidifferentiation, 154.

Appendix A, 221.

Appendix B, 234.

Arcsin, 38: derivative of, 235.

Area, 152: negative, 153; under a curve, 151, 170, 216, 218.

Average velocity, 68, 213.

Axes, coordinate, 6.

Base of a logarithm, 47, 211.

Calculus: differential, 50, 212; integral, 151, 216.

Chain rule, 103, 230.

Change in variable, 163.

Circumference, 22.

Continuous function, 60.

Constant: constant function, 9.

Coordinate axes, 6.

Cosecant, 27.

Cosine, 27, 210: derivative of, 109, 215.

Cotangent, 27, 210.

Curve, area under, 151, 170, 216, 218.

Definite integral, 175, 218: definition, 178, 218.

Definitions: definite integral, 178, 218; derivative, 79, 213; indefinite in-

tegral, 150, 217; limit, 56, 212; partial derivative, 238.

Degree, 20, 210.

Dependent variable, 5, 208.

257
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Derivative, 76, 213: definition, 79, 213; graph of, 82; higher order, 126, 215;

of areas, 153, 216; partial, 238; reciprocal of, 232; second, 126, 215. See

also Differentiation.

Diameter, 22.

Differential calculus, 50, 212.

Differential equations, 241.

Differential, 138.

Differentiation, 91, 214; of*'
1

, 95, 214, 226; of u + v, 98, 214; of uv, 99, 214,

229; oiulv, 102, 194; chain rule, 103, 214; of trigonometric functions,

109, 228; of sine, 113, 215, 228; of cosine, 113, 215, 228; of logarithms,

116, 215, 230; of exponentials, 122, 215; partial, 238; implicit, 234; of

inverse trigonometric functions, 235. See also Derivative.

Distance, as integral of velocity, 190.

Domain, 4, 208.

dy
-f, derivative of y with respect to x, 79, 213.
ax

e, base of natural logarithms, 48, 58, 211.

Elements, of set, 3.

Equation: differential, 241; linear, 11; quadratic, 18.

Exponential function, 39, 211; differentiation of, 122, 215; integration of,

160.

Extrema, 129.

Factorial, 129.

Function: 3, 208; constant, 9; absolute value, 9; exponential, 39, 211; func-

tions with same derivative, 232; linear, 11, 209; logarithmic, 44, 211;

quadratic, 18, 209; trigonometric, 27, 210, 235.

Fundamental theorem of integral calculus, 179, 219.

fix), 5, 208.

Fix), 158.

Graph, 6, 209; of derivative, 82.

Higher-order derivative, 126, 215.

Horizontal axis, 6, 209.

Implicit differentiation, 234.

Indefinite integral, 158, 217; definition of, 158, 217.

Independent variable, 5, 208.

Instantaneous velocity, 70, 213.

Integral calculus, 151, 216: fundamental theorem of, 178, 219.

Integral table, 161, 256.

Integral, 158, 216: indefinite, 158, 217; definite, 217, 218; multiple, 199;

iterated, 201.

Integration, 154, 158: by parts, 167; numerical, 185.
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Interval, 51.

Inverse trigonometric functions, 38: differentiation of, 235.

Irrational numbers, 42.

Iterated integral, 201.

Limit, 50, 212, 222: definition of, 56, 212; of slope, 77; theorems on, 222; of

trigonometric functions, 224.

Linear function, 11, 209.

Log, logarithm, see Logarithmic function.

Logarithmic function, 39, 211: differentiation of, 214, 222, 230.

Maxima, 129.

Minima, 129.

Minute of arc, 20.

Multiple integral, 199, 220.

Natural logarithm, 48, 117, 212.

Negative area, 153.

Numerical integration, 185, 219.

Ordinate, 7.

Origin, 6.

Oscillatory motion, 242.

Parabola, 18.

Partial derivative, 238.

Periodic function, 35.

Plotting of a graph, 6.

Population growth, 241.

Product rule, 99.

Proofs, 221.

Quadratic equation, 18, 209.

Quotient rule, 102.

Radian, 22, 210.

Radius, 22.

Reading, suggestions for, 243.

Real numbers, 3.

Reciprocal of derivative, 232.

Review problems, 245.

Right triangles, 30.

Roots, 18, 209.

Secant, 27, 210.

Second of arc, 20.

Second derivative, 126, 215.

Set, 3.
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Simpson's rule, 187.

Sine, 27, 210: derivative of, 113, 215, 228.

Slope, 13, 66, 209.

Speed, 64.

Suggestions for further reading, 243.

Sum of angles, 36, 210, 221.

Symbol index, 261.

Tables: derivative, 254; integral, 161, 256.

Tangent, 27, 210: derivative of, 113.

Triangles, 58.

Trigonometric functions, 26, 210, 221: differentiation of, 113, 215, 228; inte-

gration of, 159, 256; inverse, 38, 235; limits of, 224; of sums and dif-

ferences of angles, 36, 210, 221.

Trigonometry, 20.

Variable, 5, 208.

Velocity, 18, 64, 213: average, 68, 213; instantaneous, 70, 213.

Vertical axis, 6, 209.

Volume, 194, 204.

x-axis, 6, 209.

y-axis, 6, 209.

y\ derivative of y, 80, 213.
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References are by page number

A, A(x), area, 157.

a, acceleration, 127.

am , 40, 211.

a"m , 40, 211.

a"1"1

, 42, 211.

arc, length of arc, 22, 25.

arcsin, 38.

c, constant, often used as constant of integration, 158.

cos, cosine, 27, 210.

cot, cotangent, 27, 210.

esc, cosecant, 27, 210.

dx, differential of*, 138, 216.

dy, differential of y, 138, 216.

dy d—
, "T"(y)i y' derivative of y with respect to x, 80, 213.

dPy
-7-J2,

second derivative of y with respect to x, 126.

dny
-j3j, nth derivative of y with respect to x, 128.

dw—
, partial derivative of w with respect to x, 238.

dx

S, delta (Greek small letter), 56.

A, delta (Greek capital letter) often used to indicate small differences, as
Ax = x2 - *i, 72, 138, 186.

AA t , element of area, 199.

e, base of natural logarithms, 48, 58, 211.

c, epsilon (Greek letter), 56.

Ax), 5, 208.

f{l, w), 238.

lim, 54, 212.
x-»a

log, logarithm to base 10, 45, 211.

261
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log,.*, logarithm of x to the base r, 47, 211.

In x, natural logarithm of x or loge ;t, 48, 117, 212.

m, slope, 15.

mph, miles per hour, 64.

it, pi (Greek letter), used to represent the number 3.14159 . . ., which is the

ratio of the circumference of a circle to its diameter, 22.

rad, radians, 22.

S, distance, 64.

sec, secant, 27, 210.

sin, sine, 27, 210.

tan, tangent, 27, 210.

2, sigma (Greek letter) used to represent summation, 177.

n

2 , summation of gixj from i = 1 ton, 177.

f, integral sign, 158, 178.

J f(x) dx, indefinite integral of fix) with respect to x, 158, 217.

I fix) dx, definite integral of fix) with respect to x from x = a to x = b, 178,

219.

t, time, 64.

0, theta (Greek letter) often used to indicate angles, 20.

v, velocity, 64.

v, average velocity, 68.

(*, y), 7-

I x I, absolute value function, 9.

+ , not equal, 58.

==, approximately equal, 155.

[a
I
b I c I d], symbol to indicate multiple choices. Encircle one letter to

indicate answer, 2. (Correct answer given at bottom of the next left-

hand page.)

<
I x - a I

< B, 51.

' indicates derivative, 80, 213; also minute of arc, 20.

", second, 20.

°, degree, 20.

L , angle, 25.

>, greater than, 10.

<, less than, 10.

2* or s, greater than or equal, 10.

«, :£, less than or equal, 10.

\T , square root symbol

!, factorial symbol, 129.

oo, symbol for infinity.

/, division symbol, 14.

I*

, 173.
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