Maxwell's Thermodynamic Relation

Maxwell derived the relation by combining $1^{\text {st }} \& 2^{\text {nd }}$ law of thermodynamics for a PVT system undergoing an infinitesimal reversible process.

We have from $1^{\text {st }}$ law of thermodynamics,

$$
\begin{gather*}
d Q=d U+d W \\
\Rightarrow d Q=d U+p d V \\
\therefore \quad d U=d Q-p d V \tag{i}
\end{gather*}
$$

From second law of thermodynamics,

$$
\begin{align*}
d S & =\frac{d Q}{T} \\
\Rightarrow d Q & =T d S \\
\therefore \quad d U & =T d S-p d V \tag{ii}
\end{align*}
$$

Considering $\mathrm{U}, \mathrm{S} \& \mathrm{~V}$ are function of two independent variables $x \& y$.

$$
\begin{aligned}
d U & =\left(\frac{\partial U}{\partial x}\right)_{y} d x+\left(\frac{\partial U}{\partial y}\right)_{x} d y \\
d S & =\left(\frac{\partial S}{\partial x}\right)_{y} d x+\left(\frac{\partial S}{\partial y}\right)_{x} d y \\
d V & =\left(\frac{\partial V}{\partial x}\right)_{y} d x+\left(\frac{\partial V}{\partial y}\right)_{x} d y
\end{aligned}
$$

Substituting their value in eq. (ii) we have-

$$
\begin{aligned}
\left(\frac{\partial U}{\partial x}\right)_{y} d x+\left(\frac{\partial U}{\partial y}\right)_{x} d y & =T\left\{\left(\frac{\partial S}{\partial x}\right)_{y} d x+\left(\frac{\partial S}{\partial y}\right)_{x} d y\right\}-p\left\{\left(\frac{\partial V}{\partial x}\right)_{y} d x+\left(\frac{\partial V}{\partial y}\right)_{x} d y\right\} \\
& =\left\{T\left(\frac{\partial S}{\partial x}\right)_{y}-P\left(\frac{\partial V}{\partial x}\right)_{y}\right\} d x+\left\{T\left(\frac{\partial S}{\partial y}\right)_{y}-P\left(\frac{\partial V}{\partial y}\right)_{x}\right\} d y-- \text { (iii) }
\end{aligned}
$$

Comparing the coefficient of $d x \& d y$ from equation (iii) we have-

$$
\begin{align*}
& \left(\frac{\partial U}{\partial x}\right)_{y}=T\left(\frac{\partial S}{\partial x}\right)_{y}-P\left(\frac{\partial V}{\partial x}\right)_{y} \tag{iv}\\
& \left(\frac{\partial U}{\partial y}\right)_{x}=T\left(\frac{\partial S}{\partial y}\right)_{y}-P\left(\frac{\partial V}{\partial y}\right)_{x} \tag{v}
\end{align*}
$$

Differentiating equation (iv) $\&(\mathrm{v})$ with respect to $y \& x$ we have-

$$
\begin{aligned}
& \frac{\partial^{2} U}{\partial y \cdot \partial x}=\left(\frac{\partial T}{\partial y}\right)_{x} \cdot\left(\frac{\partial S}{\partial x}\right)_{y}+T \cdot \frac{\partial^{2} S}{\partial y \cdot \partial x}-\left(\frac{\partial p}{\partial y}\right)_{x} \cdot\left(\frac{\partial U}{\partial x}\right)_{x}-p\left(\frac{\partial^{2} V}{\partial y \cdot \partial x}\right) \\
& \frac{\partial^{2} U}{\partial x \cdot \partial y}=\left(\frac{\partial T}{\partial x}\right)_{y} \cdot\left(\frac{\partial S}{\partial y}\right)_{x}+T \frac{\partial^{2} S}{\partial x \cdot \partial y}-\left(\frac{\partial p}{\partial x}\right)_{y} \cdot\left(\frac{\partial U}{\partial y}\right)_{x}-p\left(\frac{\partial^{2} V}{\partial y \cdot \partial x}\right)
\end{aligned}
$$

Since $d U$ is a perfect differential, above two expressions are equal $\frac{\partial^{2} U}{\partial y \cdot \partial x}=\frac{\partial^{2} U}{\partial x \cdot \partial y}$ and single $d S \& d V$ are perfect differential.

After simplifying we can write,

$$
\begin{equation*}
\left(\frac{\partial T}{\partial y}\right)_{x} \cdot\left(\frac{\partial S}{\partial x}\right)_{y}-\left(\frac{\partial p}{\partial y}\right)_{x} \cdot\left(\frac{\partial U}{\partial x}\right)_{x}=\left(\frac{\partial T}{\partial x}\right)_{y} \cdot\left(\frac{\partial S}{\partial y}\right)_{x}-\left(\frac{\partial p}{\partial x}\right)_{y} \cdot\left(\frac{\partial U}{\partial y}\right)_{x} \tag{vi}
\end{equation*}
$$

Equation (vi) is the general equation for Maxwell's thermodynamic Relation.

$1^{\text {st }}$ Relation:

Putting $x=T, y=V$ and taking $T \& V$ as independent variables.

$$
\begin{aligned}
& \frac{\partial T}{\partial x}=1, \frac{\partial V}{\partial y}=1, \frac{\partial T}{\partial y}=0, \frac{\partial V}{\partial x}=0 \\
&(\mathrm{vi}) \Rightarrow\left(\frac{\partial S}{\partial V}\right)_{T}=\left(\frac{\partial P}{\partial T}\right)_{V} \\
& \therefore\left(\frac{\partial Q}{\partial V}\right)_{T}=\left(\frac{\partial P}{\partial T}\right)_{V}
\end{aligned}
$$

For a thermodynamic system, the increase of entropy per unit increase of volume at constant temperature is equal to the increase of temperature in a isochoric process.

$2^{\text {nd }}$ Relation:

Taking $T \& P$ are independent variables. i.e. $x=T \& y=P$
We get from (vi)

$$
\frac{\partial T}{\partial x}=1, \frac{\partial P}{\partial y}=1 \& \frac{\partial T}{\partial y}=0, \frac{\partial P}{\partial x}=0
$$

$$
\begin{aligned}
& \left(\frac{\partial S}{\partial p}\right)_{T}=-\left(\frac{\partial V}{\partial T}\right)_{p} \\
& \left(\frac{\partial Q}{\partial p}\right)_{T}=-\left(\frac{\partial V}{\partial T}\right)_{p}
\end{aligned}
$$

The decrease of entropy per unit increase of pressure in a isothermal process is equal to the increase of volume per unit increase of temperature for a isobaric process.

$3^{\text {rd }}$ Relation:

Taking entropy \& volume as independent variables. i.e. $x=S$ \& $y=V$
We get,

$$
\frac{\partial S}{\partial x}=1, \frac{\partial V}{\partial y}=1 \& \frac{\partial S}{\partial y}=0, \frac{\partial V}{\partial x}=0
$$

From equation (vi) we can write,

$$
\begin{aligned}
& \left(\frac{\partial T}{\partial x}\right)_{s}=-\left(\frac{\partial P}{\partial s}\right)_{v} \\
& \Rightarrow\left(\frac{\partial T}{\partial x}\right)_{s}=-T\left(\frac{\partial P}{\partial Q}\right)_{v}
\end{aligned}
$$

The increase of temperature per unit increase of volume in a reversible adiabatic process is equal to the decrease of pressure per unit increase of entropy in a isochoric process.

$4^{\text {th }}$ Relation:

Taking entropy \& Pressure as independent variable. i.e. $x=S \& y=P$
We have,

$$
\frac{\partial S}{\partial x}=1, \frac{\partial P}{\partial y}=1 \& \frac{\partial S}{\partial y}=0, \frac{\partial P}{\partial x}=0
$$

(vi) $\Rightarrow\left(\frac{\partial T}{\partial p}\right)_{s}=\left(\frac{\partial v}{\partial S}\right)_{p}$

$$
\Rightarrow\left(\frac{\partial T}{\partial p}\right)_{s}=T\left(\frac{\partial v}{\partial Q}\right)_{p}
$$

The increase of temperature per unit increase pressure in a reversible adiabatic process is equal to the increase of volume per unit increase of entropy in a isobaric process.

$5^{\text {th }}$ Relation:

Taking p \& v as independent variable. i.e. $x=p \& y=v$
We get,

$$
\frac{\partial p}{\partial x}=1, \frac{\partial v}{\partial y}=1 \& \frac{\partial p}{\partial y}=0, \frac{\partial v}{\partial x}=0
$$

(vi) $\Rightarrow\left(\frac{\partial T}{\partial p}\right)_{v} \cdot\left(\frac{\partial S}{\partial v}\right)_{v}-\left(\frac{\partial T}{\partial v}\right)_{p} \cdot\left(\frac{\partial S}{\partial p}\right)_{v}=1$

$6^{\text {th }}$ Relation:

Taking T \& S as independent variable. i.e. $x=T \& y=S$
We get,

$$
\begin{gathered}
\frac{\partial T}{\partial x}=1, \frac{\partial S}{\partial y}=1 \& \frac{\partial T}{\partial y}=0, \frac{\partial S}{\partial x}=0 \\
\text { (vi) } \Rightarrow\left(\frac{\partial p}{\partial T}\right)_{S} \cdot\left(\frac{\partial v}{\partial S}\right)_{T}-\left(\frac{\partial p}{\partial S}\right)_{T} \cdot\left(\frac{\partial v}{\partial T}\right)_{S}=1
\end{gathered}
$$

Clausius - Clapeyron equation (1st latent heat equation)

From Maxwell's $1^{\text {st }}$ relation we can write

$$
\begin{align*}
& \left(\frac{\partial S}{\partial v}\right)_{T}=\left(\frac{\partial P}{\partial t}\right)_{v} \\
& \Rightarrow T\left(\frac{\partial S}{\partial v}\right)_{T}=T\left(\frac{\partial P}{\partial T}\right)_{v} \quad[\because d Q=T d S] \\
& \Rightarrow\left(\frac{\partial Q}{\partial v}\right)_{T}=T\left(\frac{\partial P}{\partial T}\right)_{v} \tag{i}
\end{align*}
$$

Here, $\left(\frac{\partial Q}{\partial v}\right)_{T}$ represents the quantity of heat absorbed per unit increase in volume at constant temperature. This quantity of heat absorbed at constant temperature is the latent heat (L),

Thus $d Q=L \& d V=V_{2}-V_{1}$

$$
\begin{aligned}
& \therefore\left(\frac{L}{V_{2}-V_{1}}\right)_{T}=T\left(\frac{d p}{d T}\right)_{V} \\
& \Rightarrow\left(\frac{d p}{d T}\right)=\frac{L}{T\left(V_{2}-V_{1}\right)} \text { which is the } 1^{\text {st }} \text { latent heat equation. }
\end{aligned}
$$

Specific heat of constant volume Cv:

The amount of heat required to raise the temperature of unit mass of a gas through $1^{\circ} \mathrm{C}$ when its volume keep constant, it is represented by $C_{v}=\left(\frac{\Delta Q}{\Delta T}\right)_{v}$

Pressure C_{p} : The amount of heat required to raise the temperature of unit mass of a gas through $1^{\circ} \mathrm{C}$ when its pressure keep constant, it is represented by $C_{p}=\left(\frac{\Delta Q}{\Delta T}\right)_{p}$

Show that $\quad C_{p}-C_{v}=R$
If $V \& T$ are chosen as the independent variables $U=f(V, T)$
Differentiating (i)

$$
\begin{equation*}
d U=\left(\frac{\partial U}{\partial T}\right)_{V} d T+\left(\frac{\partial U}{\partial V}\right)_{T} d V \tag{ii}
\end{equation*}
$$

According to the $1^{\text {st }}$ law of thermodynamics-

$$
\begin{align*}
d Q & =d U+d W \\
& =d U+p d V \\
& =\left(\frac{\partial U}{\partial T}\right)_{V} d T+\left(\frac{\partial U}{\partial V}\right)_{T} d V+p d V \tag{iii}
\end{align*}
$$

Dividing both side by $d T$

$$
\begin{equation*}
\frac{d Q}{d T}=\left(\frac{\partial U}{\partial T}\right)_{V}+\left\{p+\left(\frac{\partial U}{\partial V}\right)_{T}\right\} \frac{d V}{d T}- \tag{iv}
\end{equation*}
$$

If the gas is heated at constant volume-

$$
\begin{align*}
& \left(\frac{\partial Q}{\partial T}\right)_{V}=C_{V} \& \frac{d V}{d T}=0 \\
& \left(\frac{\partial Q}{\partial T}\right)_{V}=\left(\frac{\partial U}{\partial T}\right)_{V}=C_{V} \tag{v}
\end{align*}
$$

When the gas is heated at constant pressure,

$$
\begin{aligned}
& \frac{d Q}{d T}=C_{p} \\
& \therefore C_{p}=\left(\frac{\partial U}{\partial T}\right)_{V}+\left\{p+\left(\frac{\partial U}{\partial V}\right)_{T}\right\}\left(\frac{\partial V}{\partial T}\right)_{p}
\end{aligned}
$$

$$
\begin{aligned}
& \therefore C_{p}=C_{V}+\left\{p+\left(\frac{\partial U}{\partial V}\right)_{T}\right\}\left(\frac{\partial V}{\partial T}\right)_{p} \\
& \text { But }\left(\frac{\partial U}{\partial V}\right)_{T}=0
\end{aligned}
$$

For ideal gas equation we can write

$$
\begin{aligned}
& P V=R T \\
\Rightarrow & P\left(\frac{\partial V}{\partial T}\right)_{p}=R \\
& \therefore C_{p}-C_{V}=P \cdot\left(\frac{\partial V}{\partial T}\right)_{p}+\left(\frac{\partial U}{\partial V}\right)_{T} \cdot\left(\frac{\partial V}{\partial T}\right)_{*} \\
\Rightarrow & C_{p}-C_{V}=R \quad \text { (Shown) }
\end{aligned}
$$

Maxwell's law of Equipartition energy:

According to kinetic theory of gas we can write,

$$
\frac{1}{2} m c^{2}=\frac{3}{2} k T
$$

But, $\quad c^{2}=u^{2}+v^{2}+w^{2} \quad$ as x, y, z are all equivalent. Mean square velocities along three axes are equal.

$$
u^{2}=v^{2}=w^{2}
$$

Hence,

$$
\begin{aligned}
& u^{2}=v^{2}=w^{2}=\frac{1}{3} c^{2} \\
\therefore & \frac{1}{2} m u^{2}=\frac{1}{2} m v^{2}=\frac{1}{2} m w^{2} \\
\therefore & \frac{1}{2} m c^{2}=3\left(\frac{1}{2} m u^{2}\right)=\left(\frac{1}{2} m v^{2}\right)=\left(\frac{1}{2} m w^{2}\right)=\frac{3}{2} k T \\
\Rightarrow & 3\left(\frac{1}{2} m u^{2}\right)=\frac{3}{2} k T \\
\Rightarrow 3\left(\frac{1}{2} m v^{2}\right)=\frac{3}{2} k T & \text { or, } \frac{1}{2} m u^{2}=\frac{1}{2} k T \\
& \text { or, } \frac{1}{2} m v^{2}=\frac{1}{2} k T
\end{aligned}
$$

$$
\Rightarrow 3\left(\frac{1}{2} m w^{2}\right)=\frac{3}{2} k T \quad \text { or, } \frac{1}{2} m w^{2}=\frac{1}{2} k T
$$

Thus, the average K.E. associated with each degree of freedom $=\frac{1}{2} k T$

