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find the subject tough and provides numerous examples with explanations.

Similarly, the topic Finite World Length Effect has its emphasis on clear concepts and a
simple and easy to understand presentation. The coverage of the topic has a prerequisite that
the students are familiar with number and decimal systems.

The topic Multirate Signal Processing has been discussed with necessary mathematical
treatment. The basic concepts are explained in simple English to facilitate better comprehension.

This textbook has a crisp and clear introduction to Estimation Theory starting from Estimation
Parameters to Model Estimation.

The field of Digital Signal Processing has its impact on all areas of technology and science.
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Introduction to
Digital Signal Processing

W 11 WHATIS DSP? .

DSP or Digital Signal Processing, as the term suggests, is the processing of signals by digital means. A signal
in this context means a source of information. In general terms, a signal is a stream of information representing
anything from stock prices to data from a remote-sensing satellite. The signal here means an electrical signal
carried by a wire or telephone line, or perhaps by a radio wave. In many cases, the signal is initially in the form
of an analog electrical voltage or current, produced for example by a microphone or some other type of
transducer. In some situations the data is already in digital form—such as the output from the readout system
of a CD (compact disc) player. An analog signal must be converted into digital (i.e. numerical) form before DSP
techniques can be applied. An analog electrical voltage signal, for example, can be digitized using an
analog-to-digital converter (ADC). An analog signal on sampling results in a discrete signal followed by
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quantization and encoding in order to convert the discrete signal to digital signal. This generates a digital
output in the form of a binary number whose value represents the electrical voltage input to the device.

Signals need to be processed in a variety of ways. For example, the output signal from a transducer may be
contaminated with noise. The electrodes attached to a patient’s chest when an electrocardiogram (ECG) is
taken, measure tiny electrical voltage changes due to the activity of the heart and other muscles. The signal is
often strongly affected due to electrical interference from the mains supply, electromagnetic interference,
muscle artifacts, etc. Processing the signal using a filter circuit can remove or at least reduce the unwanted part
of the signal. Nowadays, the filtering of signals to improve signal quality or to extract important information is
dane by DSP techniques rather than by analog electronics.

The development of digital signal processing dates from the 1960s with the use of mainframe digital
computers for number-crunching applications such as the Fast Fourier Transform (FFT), which allows the
frequency spectrum of a signal to be computed rapidly. These techniques were not widely used earlier because
suitable computing equipment was available only in leading universities and other scientific research institutions.
The introduction of the microprocessor in the late 1970s and early 1980s made it possible for DSP techniques
1o be used in a much wider range of applications. However, general-purpose microprocessors such as the Intel
x86 family are not ideally suited to the numerically-intensive requirements of DSP, and during the 1980s the
increasing importance of DSP led several major electronic manufacturers (such as Texas Instruments, Analog
Devices, and Motorela) to develop Digital Signal Processor chips-—specialized microprocessors with
architectures designed specifically for the types of operations required in digital signal processing. (Note that
the acronym DSP can variously mean Digital Signal Processing, the term used for a wide range of techniques for
processing signals digitally, or Digital Signal Processor, a specialized type of microprocessor chips). Like a
general-purpose microprocessor, a DSP is a programmable device, with its own native instruction code. DSP
chips are capable of carrying out millions of floating peint operations per second, and like their better-known
general-purpose cousins, faster and more powerful versions are continually being introduced.

DSP technology is commonly employed nowadays in devices such as mobile phones, multimedia computers,
video recorders, CD players, hard disc drive controllers and modegns, and will soon replace analog circuitry in
TV sets and telephones. An important application of DSP is in signal compression and decompression. In CD
systems, for example, the music recorded on the CD is in a compressed form (to increase storage capacity) and
must be decompressed for the recorded signal to be reproduced. Signal compression is used in digital cellular
phones to allow a greater number of calls to be handled simultaneously within each local “cell”. DSP signal
compression technology allows people not only to talk to one another by telephone but also to see one another
on the screens of their PCs, using small video cameras mounted on the computer monitors, with only a
conventional telephone line linking them together. Although the mathematical theory underlying DSP techniques
such as Fast Fourier transform, Wavelet transform, Hilbert transform, Digital filter design and Signal compression
can be fairly complex, the numerical operations required to implement these techniques are in fact very simple,
consisting mainly of operations that could be done on a cheap four-function calculator. The architecture of a
DSP chip is designed to carry out such operations incredibly fast, processing upto tens of millions of samples
per second, to provide real-time performance, that is, the ability to process a signal “live™ as it is sampled and
then output the processed signal, for example, to a loud speaker or video display. All the practical applications
DSP mentioned earlier, such as hard disc drives and mobile phones, demand real-time operation.

In signal processing, the function of a filter is to remove unwanted parts of the signal, such as random
noise, or to extract useful parts of the signal, such as the components lying within a certain frequency range.
There are two main kinds of filters, analog and digital. They are quite different in their physical makeup and in
their working. An analog filter uses analog electronic circuits made from components such as resistors, capacitors
and op amps to produce the required filtering effect. Such filter circuits are widely used in applications such as
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noise reduction, video signal enhancement, graphic equalizers in ii-f7 systems, and many other areas. There are
well-established standard techniques for designing an analog filter circuit for a given requirement, At all
stages, the signal being filtered is an electrical voltage or current, which is the direct analog of the physical
quantity (example, a sound or video signal or transducer output) involved.

A digital filter uses a digital processor to perform numerical calculations on sampled values of the signal.
The processor may be a general-purpose computer such as a PC, or a specialized DSP (Digital Signal Processor)
chip. The analog input signal must first be sampled and digitized using an ADC. The resulting binary numbers,
representing successive sampled values of the input signal, are transferred to the processor, which carries out
numerical caleulations on them. These calculations typically involve multiplying the input values by constants
and adding the products together. If necessary, the results of these calculations, which now represent sampled
values of the filtered signal, are output through a DAC (digital to analeg converter) to convert the signal back
to analog form. Note that in a digital filter, the signal is represented by a sequence of numbers, rather than a

voltage or current.

The main advantages of digital filters over analog filters are listed below.

1. Adigital filter is programmable, that is, its operation is determined by a program stored in the processor’s
memory. This means the digital filter can easily be changed without affecting the circuitry (hardware).
An analog filter can only be changed by redesigning the filter circuit,

2. Digital filters are egsily designed, tested and implemented on a general-purpose computer or
workstation.
3. The characteristics of analog filter circuits (particularly those containing active components) are

subject to drift and are dependent on temperature. Digital filters do not suffer from these problems,
and so are extremely stable with respect to both time and temperature.

4. Unlike their analog counterparts, digital filters can handle low frequency signals accurately. As the

speed of DSP technology continues to increase, digital filters are being applied to high frequency
signals in the RF (radio frequency) domain, which in the past was the exclusive preserve of analog

technology.

5. Digital filters are very much more versatile in their ability to process signals in a variety of ways; this
includes the ability of some types of digital filter to adapt to changes in the characteristics of the
signal.

Fast DSP processors can handle complex combinations of filters in parallel or cascade (series), making the

hardware requirements relatively simple and compact in comparison with the equivalent analog circuitry.
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Signals and Systems

H 2.1 INTRODUCTION TO MODELING '

This book discusses signals and systems related to Engineering. It focuses on the modeling of physical signﬁls
and systems by mathematical functions, and the solution of such mathematical functions, when the system is
excited by such signals.

2.1.1 Signals

A signal is defined as a function of one or more variables which conveys information. A signal is a physical
quantity that varies with time in general, or any other independent variable. It can be dependent on one or more
independent variables. Dimension of a signal may be defined based on the number of independent variables.
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Any variables which does not convey information is called Noise. Noise is a random phenomenon in which
physical parameters are time-variant. Unlike a signal, noise is usually does not carry useful information and is
~ almost always considered undesirable. Some examples include channel noise in communication systems,
transformer humming in electrical engineering and moving artifacts in biological systems.

2.1.2 One-dimensional Signal
When a function depends on a single independent variable to represent the signal, it is sald to be a
one-dimensional signal.

The ECG signal and speech signal shown in Fig. 2.1(a) and 2.1(b) respectively are examples of one-
dimensional signals where the independent variable is time. The magnitude of the signals is dependent variable.
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Fig. 2.1 One-dimensional Signal
(a) ECG Signal (b) Speech Signal

2.1.3 Two-dimensional Signal

When a function depends on two independent variables to represent the signal, it is said to be a two-dimensional
signal. For example, photograph shown in Fig. 2.2 is an example of two-dimensional signal wherein the two
independent variables are the two spatial coordinates which are usually denoted by x and y.

¥ L

X
Fig. 2.2 Two-dimensional Photograph
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2.1.4 Multi-dimensional Signal

When a function depends on more than one independent variables to represent the signal, it is said to be a
multi-dimensional signal. For example, space missile shown in Fig. 2.3 is an example of three-dimensional image.

Ak

'

Fig. 2.3 3D-Space Missile

Definition

Input signal A signal that enters a system from an external source is referred to as an input signal. For
example, the voltage from a function generator, electrocardiogram from heart, temperature from the human

body, etc.

Qutput signal A signal produced by the system (may or may not be} in response to the input signal is called
the output signal. For example, displacement due to force, output voltage from an amplifier, sinusoidal signal
from an oscillator, etc.

2.1.5 Sampling

Sampling is a process by which a continuous-time signal (continuous with respect to time) is converted into a
sequence of discrete samples, with each sample representing the amplitude of the signal at a particular instant
of time. The sampling can be either uniform or non-uniform sampling.

In uniform sampling, the space between any two samples is fixed throughout the signal under consideration.
A uniform sampling is illustrated in Fig. 2.4. In nonuniform sampling, the space between any two samples varies
throughout the signal under consideration based on their characteristics like frequency, etc. In general, uniform
sampling 15 preferred over nonuniform sampling since it is simple to analyze and easy to implement. The
hardware complexity is also low in uniform sampling.
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Fig. 2.4 Uniform Sampling of signal

2.1.6 Quantization

Quantization is a process by which each sample produced by the sampling circuit to the nearest level is
selected from a finite number of discrete amplitude level as illustrated in Fig. 2.5.
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Fig. 2.5 Quantization of Signal

2.1.7 Coding

Coding is needed in order to represent each quantized sample by a binary numiber *0° or *1°. The *0" represents
the “low™ state or logical “0°, and *1” represents the “high” state or logical *1°. The encoded version of quantized
signal of Fig. 2.5 is shown in Table 2.1,
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Table 2.1 3-bit Quantization and its Binary Representation

n 0 1 2 3 4 5 6 7 8 9 10 |11 (12 |13 |14 |15 | 16
| () | 2 3 7 7 7 b 5 4 4 4 3 3 4 4 4 5
Binary | 001 | 010 | 100 | 100 § 000 f 10D § 1RO | 100 | 100 | 100 | 100 | 1001 { 101 § 100 | 100 [ 100 | 101

m . 2.2 CLASSIFICATION OF- SIGMNALS

Signals are classified based on their fundamental properties. They are:

Contimuous-time signal and Discrete-time signal
Periodic signal and Aperiodic signal

Deterministic signal and Random signal

[
2
3. Evensignal and Odd signal
4
5

Energy signal and Power signal

2.2.1 Continuous-time Signal and Discrete-time Signal

Signal can be rcpr:scntﬁd'cith!:r by continucus or discrete values,

Continuous-time signal A signal x(7) is said to be a continuous-time signal if it is defined for all time «. The
amplitude of the signal varies continuously with time. In general, all signals by nature are continuous-time
signals. .

The speech signal is a continuous-time signal, that is, conversation between persons is continuous with
respect to time (Fig. 2.6a). .
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I v
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-ﬁul : ~60 60
305 10 15 20 25 30 35 40 a5 50 8005 10 15 20 25 30 35 40 45 50"
Samplas Tirme
(=) (b)

Fig. 2.6 (a) Continuous-time Signal Representation of Speech Signal
(&} Discrete-time Signal Representation of Speech Signal



ISS-6 & Digital Signal Processing

The electrocardiogram, which is the electrical representation of the cardiac muscle, is continuous with
respect to time (Fig. 2.7(a)).
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Fip. 2.7 (a) Continuous-time Signal Representation of Electrocardiogram
(b) Discrete-time Signal Representation of Electrocardiogram

The sinusoidal signal as illustrated in Fig. 2.8(a) is continuous with respect to time.
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Fig. 2.8 (a) Continuous-time Signal Representation of Sinusoidal Signal
(b) Discrete-time Signal Representation of Sinuseidal Signal

Discrete-time signal Most of the signals that are obtained from their sources are continuous in time. Such
signals have to be discretised since the processing done on the digital computer is digital in nature. A signal
x(n) is said to be discrete-time signal if it can be defined for adiscrete instant oftime (say »). Forad is-:re!,e-time
signal, the amplitude of the signal varies at every discrete value n, which is generally uniformly spaced. A
discrete-time signal x(») is often obtained by sampling the continuous-time signal x(¢) at a uniform or nonuniform
rate. The discrete-time representation of speech signal, electrocardiogram and sinusoidal signal is shown in
Fig. 2.6(b}), 2.7(b) and 2.8(b) respectively.
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A continuous-time signal x(:} can be converted to discrete-time signal x{n) by substituting r=n7 that is,
x(t) = x(nT) |, =x{n) : {2.1)
n=0, £1, £2, +3,...
where n = Constant integer, which can take positive or/and negative values
T = Sampling period, is an integer (normally T is assume to be unity)

SOLveD PROBLEMS __

Problem 2.1 The continuous-time signal x(¢) = 5 sin( x {) for the interval 3 > ¢ > 0. Plot the corresponding
discrete-time signal with a sampling period T'= 0.1 s.

Solution
x(N=5sin{x)for3=r=0

r ] 0|02(04(06[08| 1 (1211416 18] 2 222412628 3
x| 0 129147147 (29) 0 |-29|-47|-47|-28] 0 |29]47[47129]| 0

The plot of continuous-time signal can be obtained by connecting each point hjf a line, as shown in
Fig. 2.9 (a).

The discrete-time signal can be obtained by a simple calculation given below:

IU} = 'I{.HT.:I |i:pr]"
x(0)=x(0.1n) |, g 1o
x(n) =Ssin(znl) = 5sin(0.l7n) n=10, +1, +2,...

a |l 01 |2 3 4 151617 8 9 10 [ 11 { 12 | I3 | 14 | I5
x(m)] 0 |1.5|29) 4 |48] 5 |48 4 |29 15| 0 [-15|-29]| -4 |-48| -5

The plot of the discrete-time signal is shown in Fig. 2.9 (b).

]
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Fig. 2.9 (a} Continuous-time Signal (b} Discrete-timte Signal
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Problem 2.2 The continuous-time signal x(r) = ¢ for the interval 2 > ¢ > 2. Plot the corresponding
discrete-time signal with a sampling period T=0.1s.

Solution
x(=e¥for22t>-2

! -2 |-15] -1 {-05]| 0 | 0.5 1 1.5 | 2
x() | 546 20 | 74 | 27 1 1037 ]0.13)]0.05]0.02

The plot of the above continuous-time signal can be obtained by connecting each point by a line, as
shown in Fig. 2.10 (a).

The discrete-time signal can be obtained by

x(t) = x(nT) |;.,r
x(t) = x(0.1n} |-y,

x(n) =g 20 = g 02 n=0, +1, +2,...

n|-5|4|-3|-2|-1]0} 1|2 ]3 4] 5
x(n] 27 (223]1.82] 15112 | 1|08 [0.67]0.5045) 037

The plot of the discrete-time signal is shown in Fig. 2,10 (b).
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Fig. 2.10 (a) Continuous-time Signal (b) Discrete-time Signal
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2.2.2 Periodic and Aperiodic Continuous-time Signal

A continuous-time signal x(r) is said to be periodic if
x(y=x(t+T), T>0 (2.2)
for all values of ¢,
where T = period of a cycle, which is an integer value
xt)=x(t + T)=x(t + 2N} =x(1+3T)= ... =x({+nT) (2.3)
where n = any integer |
Hence, a periodic signal with period T'> 0 is also periodic with period nT.
Prove that the cosine signal is periodic with periodicity T
Let us consider a cosine signal x(r) = A msij wi+d)
Let us assume period T which is same for all cycle in the given cosine signal

x(1) = A cos (ot + &)

leading (V]

I
I
|
I
|
I

T ——

Fig. 2.11 A cosine signal

x(t+Ty= Acos {w(t+T)+¢}
x(1+T)= Acos {wt+wl +¢}
x(t+7T)= Acos {mr+2:r+¢}

x(1+T)y= Acos{wt+ ¢} = x(n
The cosine signal is periodic as it satisfies periodicity equation (2.2).
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SOLVED PROBLEM
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Problem 2.3 Test whether the given signals are periodic or not.
(i) x(s)=emt (i) x(t)= e
Solution
(i) x(f)=e="
From the definition of periodicity, (1) = x{: + T) for T>0
Substitute ¢ = (t + T),

W+ T) =emD
Since 7=2n, sin (¢t + T)=sin (¢ + 2x) = sin (N
Therefore, x(t+T) =e=rN=gmii=x(f)

Hence, the signal x(r) = """ is periodic.
(i) x(r)= rew
From the definition of periodicity, x(f) = x(¢r+T) for T>10

Substitute ¢ = (r + T,
x(¢ +T) = (e+T) gD

Since T'=2m, sin (r + T)=sin (¢ + 2x) =sin (1)
Therefore, e+ Ty=(+ Ne™"=(r+ Ne™" £ x(1)

Hence, the signal x(r) = re**"is aperiodic,

Discrete-time periodic signal A discrete-time signal is said to be periodic with period ¥, if it is unchanged
by atime shift of ¥, i.e.

x(n) = x(n+N), for all n . (2.4)

where N is a posilive integer.

Fundamental period The fundamental period T, of the continuous-time signal x() is the smallest positive
value of T for which equation (2.2) holds. Any signal x(f) for which there is no value of T"to satisfy the condition
of equation (2.2) is called an aperiodic signal. '

The fundamental period N, of the discrete-time signal x(#} is the smallest positive value of N for which
equation (2.4) holds. Any signal x(») for which there is no value of N to satisfy the condition of equation (2.4)
is called an aperiodic signal in discrete sense.
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SOLVED PROBLEMS
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Problem 2.4 - Test whether the given exponential is periodic or not.
¥y = e/
Solution By definition, x{f) will be periodic if, ¢/} = /& (1)
eltuli+ Ty o o fo jo T
In order to satisfy equation (2.2), e¢'®/ =1
We know that, /™’ =cosw,T + jsinw,T
For wy =0, e’ =1{w =0 defines only DC signal)
Fore, #0, w,T = 27xm (defines AC signal)
then ™" =1

wherem= 1,2, 3,... (integers)

Therefore, g/t =gt
I =21m
W;}T = 2mm
Therefore, periodicity is given by, T= %ﬂ_ m (2)
8]

Similarly, for discrete-time signal x{n), the condition for periodicity is given by

where WV is an integer always. ' -
Problem 2.5 Test whether the signal is periodic. If so, find the fundamental period.

x() = :us[t +g]

Solution The given signal resembles the general expression, x(r) = cos{wx + @).

Therefore, on com paringtthe given problem with general expression the frequency w = 1.
The fundamental period for which the given signal exhibits periodicity is,

The given signal is periodic with periodicity 2.
Problem 2.6 Test whether the signal is periedic. If so, find the fundamental period.

x{r]:sin(z—:]{
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Solution

= 5i_11 [25_11']1
L_w,

2n
The frequency, m¢=T

Therefore, Tw= in =[ 27 ]=5

Wy, \2r/3
The fundamental period for which the given signal exhibits periodicity is T, = 5.

Problem 2.7 Find the fundamental period of x(r) = ms[g]r +sin [-E]f

x{t)= :as[-g-]r + sin[%]r

0 50
Solution The given signal x(¢) is a composite signal which has two component signals x (1) and x(1).

For x (1), the frequency, m, =%

. . 2T i

The fund tal dofx (f ===

¢ fundamental period of x, (1) is T, o @) 6
For x,(1), the frequency, @, = %
The fundamental period of x.(1) is T, = —% = —2%— =10

P B T wis
The signal x(1) is said to be periodic if and only if the ratio of T, to 7, is a rational, that is,
n 6 3

7 =10~ s (rational)
The fundamental period of given signal x(¢} is, 7}, = 57, = 3T, =30,
Problem 2.8 Test whether the given signal is periodic or not.
x(#) =cosi+sin v21
x(t)=cosi +sind2
gt et
x(1)  x)

Solution The given signal x(f) is a composite signal which has two compaonent signals x (¢} and x (7).
For x(r), the frequency,m, =1
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The fundamental peried of x (1}is T = L ETE =2n
I"III
For x,(1), the frequency, w, = J2
' 2t 2m
The fundamental period of x (1) is I, = ﬂ-'_z = E =2

The signal x{r) is said to be periodic if and only of the ratio of T to T, is a rational, that is,

T W2 ‘

F:: = 2 = 1 (irrational)

since the ratio of T  to T= exhibits an irrational ratio, therefore signal x{} cannot be periodic.

Note  Any signal exhibits irrational ratio of their period is aperiodic signal.

i

Problem 2.9 Test for periodicity of x(t)= je $
1]
Solution The frequency of the signal, w_= 10 ’

The signal is periodic with fundamental period n/5.

_ Problem 2,14 Test whether the given discrete-signal is periodie. If so, find the fundamental period.

x{n)=sin [2]_?!.' ]n

Solution

2n

For the given signal, the frequency, {1, = T

where £2, is the frequency in radians in the discrete domain.

2nm  2mm

= =3 (m=]
£, 2m/3 [ )
Note The fundamental period N of any discréte signal must be an integer.’

The fundamental period, A =

Problem 2.11  Test for the periodicity of x(n) = cos” [E ]n

Solution
' x(n) = cos® T
n .
I+cusl[§]n Hint “‘1’5232%

2. L

=1 i
x(n) = 2[I+¢ns[4 ]u]

- xin)=
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Since the frequency, Q%

=hm=2nm=
Q. m/4

The given signal is periodic with fundamental period N, = §.

N, 8§ (m=1)

Problem 2,12 Test for the periodicity of x(m)=¢'"™"
Solution

For the given signal, the frequency, , =7x

2rm 2mm 2
Nl:l &= = = ?{m = [:|

g, Tn

. in .
Note The general expression for fundamental period is Ny = E m. In the previous problems, the value of
m was assumed to be 1. In this problem, in order to satisfy the integer condition for a fundamental period, m

is assumed fo be 7. That 1s,

N o=2F 12
i

m
Therefore, the fundamental period N, =2 ifm=7

[ | ]
. j-'l- FT'I-E
Problem 2.13  Test for the periodicity of x(n)=4e 3

Solution

] L Phase
Frequency

Note Phase term never contributes in the definition of periodicity, that is, irrespective of the phase term the
given signal may or may not be periodic.

4ar

For the given signal, the frequency, £, = ?



Introduction to Signals and Systems @ 18815

N, = 2mem _ 2mm _ Sm

Therefore, Q, m 2
3

Period N, must be an integer. Therefore m = 2.

3
The fundamental period, ¥, = 3% 2=35

[

The given signal is periodic with period 5 ifm =2

‘o
| hG
Problem 2,14 Test for the periodicity of x(n)=4e 3

Solution

o :
x(n)=de 7 e ¥

| L Phase
Frequency

For the given signal, the frequency, {3, = %
N, = = = —
Therefore, o 0, 152

For m=7 (Substitute x = 1;—2 )N, =55

Hence, the given signal is periodic.
Probfem 2,15 Determine the fundamental period of the signal

Az ]ﬁ

/
wim)=l+e T —e 3
Solution
i=n e
x(n)=l+¢ 7 -¢'
h.l.l_v_l_ﬂ "-_V_.'*

L*‘llif bl
DC Component

The given signal x(r) is a composite signal, contains three signals: DC component, signals x (1) and x(1). The
periodicity is calculated based only on signals x (£) and x(r).

For the signal x (n), the frequency () = 4—:

The periodicity of x (n) is N, = f_:rm = 42?:? m= ;
| I
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Form=2,N =7

2
For the signal the x:{(n),the frequency £} = <

. e . r 2
The periodicity of x, (n) is Ny = a, m= YT =5 (m=1)
The signal is said to be periodic if and only if the ratio of ¥, to N, is a rational, that is, -
N, 7

N_E = E (rational)

The fundamental period is N, = 5N, =N, =35
Problem 2.16 A pair of sinusoidal signals with a common angular frequency is represented by
x,(n)=3sin (3 wn)and x (n) = .._a":-‘_, sin{3 &)
Specify the period for which the period N of both x (1) and x,(n) must satisfy them to be periodic.
Solution The common angular frequency of both the signal is given by

_ wy = 3 rad/s
Phase angle, ¢ =10
We know that the period N for discrete-time signal is given by

2 [En} [2]
Nel—Im=|l—Im=|~-=m
a,)" 3" (3 |
For x,(n) and x.(n) to be periodic, their period ¥ must be an integer. This can only be satisfied for m =3,
6,9, 12, 15, ... (integer multiples of 3), which results in period N=2, 4, 6, ... (integer multiples of 2).
Problem 2.17 Determine whether the signal x(n) = cos(0.1nn) is periodic or not.
Solution x(n) = cos(Q.] nn)
T“— Q,

For the signal x(n), the frequency £, =0.1n

The periodicity of x(n) is N = s 2 20
Q, Olirx

The given signal is periodic with period 20.
2.2.3 Even and 0dd Continuous-time Signal
A continuous-time signal x(1) is said to be even, if it satisfies the condition
x(1) = x(-1), forall ¢ (2.5)

Even signals are symmetric about the vertical axis, as illustrated in Fig. 2.12 (a). A continuous-time signal
x(1) is said 1o be odd, if it satisfies the condition '

x(1)==x(-r), forall ¢ (2.6)
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0Odd signals are antisymmetric about the vertical axis, as illustrated in Fig. 2.12 (b).
1 x.“‘} & 'A'u{l}

A

—A

(a) | (b}
Fig. 2.12 (a) Even Signal (b} Odd Signal
Let us consider a signal, x(f) which can be decomposed as odd and even signals, i.e.

x(£)=x (f) +x (1} (2.7)
where x (f) represents the odd signal and x (f) represents the even signal.
From the definition of odd and even signal,

~x,()=x,(-1) 2.82)

x (1) = x (1) (2.8b)
Replace t=—t in equation [1.:!}.
(1) =x (~1) +x (1) 2.9)
Substituting equation (2.8) in (2.9),
| xX(=) ==x () + % (1) | (2.10)

Solve equations(2.7) and (2.10).
Adding (2.7)and (2.10), (N +x(=1)=2x,()
Subtracting (2.7) from (2.10),

x({)=x(=iy=2x,(1)
Solve for x (7) and x_(7),

(1) = x(0)+ x(=1)
2 (2.11)
x. (1) =5-[—’~]# @.12)

Equations (2.11) and (2.12) gives the relation between odd and even signals.

Complex valued continuous-time signal A complex valued signal x(f) is said to be conjugate symmetry if
it satisfies the condition
' x(—1y=x'(1)
where x"(¢) is the complex conjugate of x(7).
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If x{1)=x (4 jx (1)
(2.13)
where x (1) is real part of x(f) and x (¢} is imaginary part of x(/)
On conjugating equation (2.13),
£ (1) = 5,0 ~jx (0 @.14)

It is shown that conjugation property affects only the imaginary part x (f) of the signal x(f), not the real part
x (1) of the signal. It is also understood that a complex valued signal x{s) is conjugate symmetric if its real part
is an even signal and its imaginary part is an odd signal.

Odd and even discrete-time signal A discrete-time signal x(#n) is said to be even, if it satisfies the condition
x(m)=x(-n) , foralln
Even signals are symmetric about the vertical axis as illustrated in Fig. 2.13 (a).
A discrete-time signal x(#) is said to be odd, if it satisfies the condition
x(n) ==x(=n), forall n
Odd signals are antisymmetric about the vertical axis as illustrated in Fig. 2.13 (b).

x{n) x{n)

&

1] I

-6 =5 =4 -3 -2 =1 |0 1

_I|. i
m-——ﬂ
m—nn
A bme——. g
N —a

& e
=

(a} (b)
Fig. 2.13 (a) Even Signal (b) Odd Signal

Let us consider a signal x(»n), which can be decomposed as odd and even signals, i.e.
x(n) = x (n)+x_.(n) (2.13)

where x (n)is odd signal and x_(n) is even signal
From the definitions of odd and even signal,
=x,(n) =x,(=n) (2.16)
x,(n) = x,(-n) @
Replace n = -n in equation (2.15),
| x(=n) = x,(-n)+x,(-n)

x(-n)=-x,(n)+x.(n) (2.18)
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Adding equations (2.15) and (2.18),

x(n)+x(=n) = 2x,(n)
Subtracting equation (2.15) from (2.18),

x(n)—x(-n) =2x,(n)

x{n)+ x(—n)
2
x(m}=x(=n)
2
Equations (2.19) and (2.20) gives the relation between odd and even conditions.

x,(n}=

X,(n)=

SOLVED PROBLEMS _ _ __ _ _ _ _ _ _ __ _ _ _ _ _ _ _ _ _ |

Problem 2,18 Find the odd and even components of x(t)=e'"
Solution We know that, any signal comprises of even and odd parts, i.c.

x(f)=x () +x, (1) =e'*
The even signal is given by

x(O)+x(=1) e/ +e

x ()= 3 3 =cos 2!
The odd signal is given by

el FE R |
% ()= x(t)—x(-1) _¢ e

2 2

+jd _ it
x, (0= j[ - ]:jsinzr

2

x(f) = x (1) +x () = cos 2t + jsin 2t

® [5518

(2.19)

(220)

Problem-2.19 Show that the product of two even signals or two odd signals is an even signal and that the

product of an even signal and an odd signal is an odd signal.
Solution Let us consider two even signals x () and x,(7).

x(f)=x (1) =x (0
Replace 1 = -1, then

Hint For even signal x(f) = x(—)

X(-0)=x,(~0) % x(-0)=x()
Hence, it is an even signal.
Let us consider two odd signals x {¢) and x (1).

x(4) = x,(6) = x (1)
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Replace f = —, then
-1 = :j{—r] xx (=)
x(=6) = [=x,(0)] = [-x(8)] Hint For odd signal x{-r) = —x(¢)
(1) = x,(1) = x (1) = x(1)

Hence, it is an even signal.

Let us consider two signals such that x (1) is even and x.(¢) is odd. Then

x()=x(7) = x (1) .

Replace r = -1, then
x-= -‘*‘L{"] x .r,[—.r}
x(=t) = x; () x[=x4 ()] = =x(r) which is odd.

Summary Evenx Even= Even; Odd x Odd = Even; Even xOdd = lf)dd

Problem 2.20 Find the even and odd components of x(f) = cos 1 +sin 1.
Solution .
x(f) = cos [+ sin{
x{—) = cos (—r) + sin{—) = cos f —sin {

The even part is given by
x(t)+ x(~t) _ (cost+sint)+(cosr—sint)

x (D= > = > = cos!

The odd part is given by

x(1) —zx[—r] _ (cost+ sim};[cnst —5int) = sint

x(t)=x_(1) +;rﬂ {f)=cosi+sin{

x ()=

Problem 2.21 Find the even and odd components of x(r} = {3,2,1,4,5}.

Note The arrow mark always shows the value for Oth position i.e. T
Position | -2 | -1 0 | 2
x(n) 3 2 I 4 5

Solution The even part is given by

x{n)+ x(—n)
2

x.(n) =
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x(=2)+x(2) _ 345 _

= =2 = 4
For n=-2, x.(-2) > N
_ a =x{-|]+x{l}=l+4:

For n=-1, x.(-1) 5 > 3
For n=0, x,{ﬂ}=xm]+xm]=]+tzl

2 2
For n=1. x.(1)= x[|}+;[-1} _ 4-; 2 _ 3
For n=2, e ()= DHx(2) _3+3_,

2 2

x.(my=1{4.3,1,3,4}
The odd part is given by
_x(n)=x(=n)
x. (n)= >
For n=-2, x (-2)= X2 N3) 39,
2 2
_ _ =x[—l}—x{|}21—4:_

For n=-1, x,(-1) 5 5= I.
For n=0, Iﬂ{m=w=ﬂ

— (= 4 —
For n=1, x,,{l}:xm ;f‘ D _ 22=[

x(2) = x(-2) _ =23 _
2 2

In{") ={‘L‘Lﬂ,].l}

For n=2,  x,(2)= |

Adding x (n) and x (n) pﬂsitiun-wisé, we obtain the original signal x(n).

Problem 2.22 Draw the odd and even representations for the given signal.

x(t)
2

Fig. 2.14
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Solution
For even signal, Forodd signal,
x(e)+ x(-t) x(t)—x(—t
Iﬂ{l]=—'2—“——- x"{f}*:M
2
4 x(t) xft)
2 \ 2
" 20 ; \—r
: (-0 " 0=y
i 2 i 1 2 i
/ : ) / |
| I ] I
k ] ] ]
-2, p -2, N
: X0+ x(41) " s-xi-t) |
1 E i ] i
i : -Er\ .t
] ] ] L]
| i ] 1
= ’E R -
E . t) = 20+ (-0 : § ¥ = xt=1)
' i . 2 ;
-2 2t -2, 2y
' [ ]
N2
l (= XX
] ~__
=2 2t
\-1
Fig. 2.15

Problem 2.23 Draw the even and odd signals of the signal shown below.

x{t)
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Solution
For even signal, For odd signal,
£ () = XOEXCD « (1) = XO=XCD
2 2
x() | x(1)
1 1
& x(~t) t x(~1)
/1; I
t 1
& x(t) + x(-1) T_;{.t].
/1\ r
i 0 -x
x(t) = 1
.
t N 1
-1
%,(1) = x{t) = x(-4)
ﬂﬁ}\, 2 ]
j 1
=05
Fig 2,17
Prablem 2.24 Draw the even and odd signals of the given signal.

Ax{n)

Ll

Fig. 2.18
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Solution
For even signal,

x(m+ :{ n)

x.(n)=

x(n)

T l
ol 1 2
4 x{-n)

X(n)+x(~n)

aii

—E- 2 3 4 5

x(n) = X0} + X(-n)

— T e R e W

Fig. 2.19

G £

For odd signal,
v ()= x(n) —-2 x(—n)
ax(n)
3
11
il
ol I 2 3 4 TE .
x(~-n}
3
‘ 2
1
L ]
—6-4-3-2-1
—5—4-3=-2-1 I:[_"} it
1 l l VL
-2
._3
1 x{n)=x(-n)
3
2 {
-5-4-3-2-1 1 T { [ T =1
1 l l 1 _11 2 3 4 &5
' -2
-3
() = X0 XE0)
1.5
1
—LE-I—~ -T-:"E i T l T 1.
1 2 3 4 5 D
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Complex valued discrete-time signal A complex valued signal x(n) is said to be conjugate symmetry if
it satisfies the condition

x(=n)=x" ()
where, x* (1) is the complex conjugate of x(n)
If x(n) = xp(m+ jx; (n) 221
where, x,(n) isreal part of x(n) and x,(n)is imaginary part of x(n)
On conjugating equation (2.21),
x (€)= xgp(n) = jx; () -
It is shown that the conjugation property affects only the imaginary part x; (n} of the signal x(n), not the

real part of the signal x,(n). Itis also understood that a complex valued signal x(n), is conjugate symmetric if
its real part is an even signal and imaginary part is an odd signal,

2.2.4 Energy Signal and Power Signal

Let us consider a current () flowing through a resistor R, developing a voltage w(¢) across it.
The instantaneous power p(f) dissipated in the resistor is given by

2
pll) = l% =20 R (222)

In signal processing or analysis, it is customary to define power dissipation in a resistor of unit value, i.e.
R =10, regardless of whether the given signal x(#) represents a voltage v() or a current i(f). Hence, we can
represent the instantaneous power p(f) of the signal x(/) as

p)=v () =i (N =x*(1) (2.23)

The total energy of the continuous-time signal x(r) expended over time interval =772 < 1 < + 7/2 is given
by

#1'/'2

E=Lt j plt)dt
=13
+1'ry

E=r|:.‘t_ J |I{I]|=dl'

=T'ry

E.= [|xn)f ar (224)

For discrete-time signal x(#), the total energy expended over time interval -N £ n £ +Nis given by

B= 1t ¥ x0f = 3 20 @)

=i i i
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The average power of the continuous-time signal x(f), expended over the time interval - 772 < ¢ < + T721is
given by

I. +T /I +T|'=-
P=Lt — =Lt d
Lt T-J p(r)dt=Lt — j |x()f* ar

-T 1
17 1
P== [|=] dr
For discrete-time signal x{n), the average power expended over the time interval -N s n<+Nis given by

S, [+

Am=

A signal is referred to as a power signal if, and only if, the average power of the signal satisfies the
condition .

FP= Lt
Nt 2N 41

D P<en

The square root of the average power P is called the root mean square (rms) value of the signal. It is also
noted that periodic signals and random signals are usually viewed as a power signal, whereas deterministic
signals and nonperiodic signals are energy signals.

SOLVED PROBLEMS _ __

Problem 2.25 Test whether the given signal is an energy signal or a power signal.

x(t)=e ™" u(t)
Solution
Ti2 12

E=Lt [ |xof di=Lt [ e u()P dr
I_"'—rju H""d"[.«:

E= Lt Iﬂﬂ a= 1 =[e¥]"

T —pom T=sm i n

E= ]'I:E—-:l(“ﬂ -u-] r,_,__l(“-”'l]

-1 1
EL_-—-:;-[“-—]}-—:;'ﬁ oo

The given signal is an energy signal as energy at o is finite.

1 T2 ,
P= Lt — IREGI

=712

Ty T =

P= Lt T_J le 1’m:r}| di= Lt %Tle—z:hﬂ
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I
1 2

P= Lt — [ (e")ar= Lt L(na“"

]T.I'I
T=em T 2 T—m 4T

1]

1 =2 0

P= Lt (e =)
A, =0

The given signal is not a power signal as power at e= is zero.

Problem 2,26 Test whether the given signal is an energy signal or a power signal.

x(n)=(-0.5)" u(n)
‘Solution _ )
E.=Y |x(n)[=3 |{—D.5]"u{n)’1

E.=Y (05)"=} (0.25)"

A=) a=ll
- |
| 4 Hint Ea" =
————— -_
0353 per S el

The given signal is an energy signal as E_ is finite.

P= Lt—E[{:n]’

Fl'l:-

P b 3 coorol
P= Lt 0.25

H+JN+ﬁZ{ Y
P_=—=ﬂ

The given signal is not a power signal as £, is zero.
Problem 2,27 Test whether the given signal is an energy signal or a power signal.

x(n)= uin)
Solution
E= Lt }: |x{n};
N
- N
Z [u)f = 1t Y= L (v+1)
n-.--!h' Hn-ﬂ - N

E_:M
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- H——N
P= Lt 1= Lt N+l
.V—1M1N+1E Nom 2N+ { )
1
H[I+—-)
FP= Lt ----EEL-
» H-‘_N(E-I-vlr]
N
L
p o _ I+[}=l -
s, 1 240 2

Hence, the signal x(x) = u(n) is a power signal as £, is finite.
Problem 2,28 Test whether the given signal is an energy signal or a power signal.

x(£) = tu(d)
Solution
T2 T2
E= Lt [ |x@f de= Lt |ru@f a
T _in o

72 e Ti?
E= Lt j':‘dr: Lt {—L
T=ge 0 Fegom| 3

o TY 1 TY
E==1t||—=| =0|== —
31'-}-[[1] ] 3?‘51--[]]

E =w
7}1
P= Lt — ]' |x(t)[” d
=3
=12
1;1 Tfl
P=Lt — _[ e ue)|* di= Lt — _[.* ot
—T.ﬂ
T2
et a2y T?
P'TE.TEL " :r[ 3 [
P =oa

Hence, x(f) is neither a power signal nor an energy signal as E£_ and P are infinite.
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Problem 2.29 Test whether the given signal x(r) = ¢/**™% is an energy signal or a power signal.
Solution

T2

- L'! -|'|e,r{1.i+.t.r.|}| dt _ . Hine |.='jE|=l
—'u"-"l :

ri2
E= Lt chir

T =faa
=Tid

E= Lt [rf: [Z Z) L

Eﬁ:m

Ti2

Pz;-];t... % j' | e/ 1 gy
-172

| T2 1

P=Lt — | ldr=Lt —1

Tl 3p  T=T

P= L‘[ l(l.‘.{]
Ta=T12 2

T2

~T{2

F =l<e=
Hence, it is a power signal as P_ is finite.

Problem 2.30 Test whether the given signal is an energy signal or a power signal.

x(f)=cos !
_Snlulinn
T T2
E= Lt Iiﬂr]| df = Lt j[ms:{zdf Hint cos 8= |+cos28
TTn R 2
ri2 _— 2
E= Lt [I-iacns!!]d,- = Lt jld'!+ Lt 1 J.mﬂlfd.'
T'—ps o 2 1 b 2 e D
=12 -12 _th
i
E= L MI D)o Too
T"""E,\E 2 e 2

=7 _[ Ix(e)|" dt = Lt — Iims{m dt

-i.fz —m
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1 |+ coss
P=Lt— dt
'I'—H'l:r I'II':'.I[ 2 ]

] T2 I- 1 T
—dt+ Lt — j cos 2t dt

T—h'-

-Tf1 2 -T2

F=TL: 1 7 +0=Lt L[1+I]

mear T allor 27 2
P= T

*H{ )

1
P ==<oa

The given signal is a power signal as P._ is finite.

Problem 2,31 Test whether the given signal is an energy signal or a power.signal.

Solution

x(n) = u(n)—u(n-5)

+ N
E= Lt 3 |x(if

N= * a=-N

E |u(n)-u(n-5)’

=
4
E=Yl=5<e
=l
P= Lt —— ﬁ x(m)f?
N+ N +1 =4
p= L ; i |u{n}-u[n—5j|1
N—wea N +1 7
I: 4
P= Lt —— > 1
a\'-r-H+li§]
."",,=—l~='llI

The energy of the signal is finite and the power is zero. Hence, the signal is an energy signal.

Problem 2.32 Test whether the given signal is an energy signal or a power signal.

syl ™S)
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Solution
L
E= Lt xin) = Lt e Hint [e!¥ =1
A e = __‘_‘.r .l'ﬁ"-—llr- = N | |
N
Lt 3 1= Lt @N+])
!r- N
E,=e
N
-t g B o
N ki
P= Lt —— ¥ e*[£n+£]
Now 2N +1 =, 2 4
P= Lt I E 1= Lt —I'—{EN‘F”
Noe—re 2N +]'r|-=—.'n' Neae (2N 4+ 1)
Em=m

The given signal is a power signal as P, is finite.

2.2.5 Deterministic Signal and Random Signal

ﬂr.i:rm-infsﬂc signal A deterministic signal (continuous-time or discrete-time) is a signal about which there
is ‘certainty with respect to its values at any time. In a deterministic signal, the future values of the signal are
predictable. For example, ECG, sinusoidal signal, square wave, train of pulses, ete (Fig. 2.20).

A (1) A x(1)
A A
o =
0 1 0 t
{a) (b)

Fig. 2.20 (a) Square Wave (b) Train of Pulses

Random signal A random signal (continuous-time or discrete-time) is a signal about which there is uncertainty
with respect to its values at any time. In random signal, the future values of the signal are unpredictable. For
example, speech signal, noise, moving object tracking etc (Fig. 2.21).
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& 8

Magnitudea

b8 o8

@ 5 10 15 20 25 30 35 40 45 50
Samples
Fig. 2.21 Speech Signal

® 23 BASIC OPERATIONS ON SIGNALS

1. Operations performed on dependent variables

» Amplitude scaling of signals
» Addition of signals

= Multiplication of signals -
+ Differentiation on signals -

* Integration on signals

Any operations listed above, operated on a signal does not affect the period of the signal. It only acts
upon the magnitude of the signal.

2. Operations performed on independent variables

» Time scaling of signals

= Reflection of signals

» Time shifting of signals

Any operations listed above, operated on a signal affects the period of the signal. It does not affect the
magnitude of the signal.

2.3.1 Amplitude Scaling of Signals

Consider a continuous-time signal x(r) as shown in Fig. 2.22. Let us introduce an amplitude scaling factor 'a’
to the continuous-time signal, i.e.

W= ax(l) (227

where & = scaling factor (if @ < 1, then the signal attenuates; if @ > 1, then the signal amplifies).
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Let us consider a signal x(¢) = a sin ax. When o = 0.5, the signal reduces to ¥,(1)=0.5 sin ax. Only magnitude of
the signal reduced, whereas the period of the signal unchanged as shown in Fig. 2.22(a).

When a = 1.5, the signal x(r} become y () = 1.5 sin ax. Only magnitude of the signal increased, whereas the
period of the signal remain unchanged as shown in Fig. 2.22(b).

x(1)

{a) ()
Fig. 222 Amplitude Scaling (a) a<l (b) a>1

Consider a discrete-time signal x(n)as shown in Fig. 2.23. Let us introduce an amplitude scaling factor ato
the discrete-time signal, i.e.

y(n)y=ax(n) ' (228)
where, & = scaling factor {if @ < 1, then the signal attenuates; if a > |, then the signal amplifies).

Let us consider x{(n) =u(n), 52n=0. When a = 0.5, y, = 0.5u(n). Only magnitude of the signal y (1)
reduced, whereas the number of samples remain same as shown in Fig. 2.23(b). Similarly, when « = 1.5,

¥,{n) = 1.5u(n). Only magnitude of the signal y (r) increased, whereas the number of samples remain same as
shown in Fig. 2.23(c).

e i v
15 15+ 15
1 i 1 1 I [
0.5 05l 05! , .
L
—TT 1 2 3 4 5 6 =1 1 2 3 4 §5 & =1 1 2 3 4 5 &

{a} Original Signal (b For o= 0.5 () For =15
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=1 - 3 4 7 B 9 10 n
(@
b xq(n) = 3x(n)
o ) 8 RS o . a
™ ! ) 6+ @ 8 Py e

RRRRRRTERNREENEN

100 B=7 6 ~5-4=-3 21 |01 2 3 4
(e)

Fig. 2.23 Amplitude Scaling (d) Original Signal (e} Scaled Signal (0=3)
2.3.2 Addition of Signals

Consider a pair of continuous-time signals x (/) and x,(r) as shown in Fig. 2.24. Adding these two signals, x (1)
and x (), results in a signal (7). It is important to note that the period of the output signal is unaltered.

M) =x (0 +x,(0) (2.29)
¥y l'[11 xz{t) yit) = 11'?3' + X3(t)
4 * 4 = 4
3 3 |—e
N 2 2
1 : i
2 4 o1z ! 2 - |012” = o o1 2z !

()



X(t)

5
F-
= \
3 3
2. 2
1\ i
0 1 2 ! 2 -1

yit) = %, (8} + xalt)
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xy(n}

-2

=1
ib)

—

Fig. 2.24 Addition of Signals

Consider a pair of discrete-time signals x (n) and x(n) as shown in Fig. 2.25. Adding these two signals,
x (n) and x,(n), results in a signal y{n). The period of y(n) is unchanged.

Hn)=x (n) +x.n)
x40

|uiz

01 2 3 4
(b)

(2.30)
yin}
5 i
&
3
2
Fli 2 3 4 5 "

Fig. 2.25 Addition of Signals

2.3.3 Multiplication of Signals

Consider a pair of continuous-time signals, x (r) and x_(r)as shown in Fig. 2.26. Multiplication of these two
signals, x (/) and x (f), results in a signal W1), i.e.

wny=x (0> x(1)

(2.31)

Multiplication of message signal x (f) over the carrier signal x,(t) results in a modulated signal, which is
used to transmit over communication media.
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x4 (1) Xt} HUERSUES P
1 X 1 = 11
1 +
(a) :
%4 (1) ¥a(1) MUEEHES (]
b &
-4 4
3 -3
: x 2 = 2
—_— 1 -1
L i — t 1 1 L i i i i -Il| _/l_l. — ¥
-3-2-1 |01 2 3 5 -4-3-2-1 |01 2 3 4 5 -3 -2 - |0123

(b)
Fig. 2.26 Multiplication of Signals
Consider a pair of discrete-time signal x (n) and x_(n) as shown in Fig. 2.27. Multiplication of these two )

discrete-time signals, x (n) and x (r), results in a output signal y{(#), i.e.
Yn)=x,(n) x x,(n) ' (2.32)

2.3.4 Differentiation on Signals

The derivative of an input signal x(r) with respect to time is defined by

o x(r})
e}

Example Thevoltage v(7) developed across the inductor is a derivative of the current i(r) flowing through
the inductor L, i.e.

(2.33)

yiry=

di(t)
=L
w(r) " (2.34)
Differentiation of continuous time signal is equivalent to the difference of the discrete-time signal x(n).
x{m)—x{n—1) (2.35)

The differentiation of square wave and sinusoidal wave are illustrated in Fig. 2.28 (a) and Fig. 2.28 (b) respectively,
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x,l:in',i Xz(n)
53
41 X 4
3+ 3
i | | [, | |
Lo Ll D0 THILTRHTT T
-6-5-4-3-2-1 01 2 3 4 6§ 6N —_g-5-4-3-2-10 1 2 3 4 5 & n
i
y{n) = x4 (n) = xz(n)
-] rEl ™ o
&
9 1 ) & o
3
2 -
REREEE g
—6-5-4-3-2-1 |01 2 3 4 5 6 1
(a)
%y {n) 1’:}::“1
T L 8
4 5 & . 025 TITTT??L,
2 3 B 8 n 01 2 3 4 5 6 7 8 9 n

U
yin) = x1(n) x xz(n}
1
0.25 I [ 4567 5 .
-025f01 23 | L & ¢ g n
{b)

Fig. 2.27 Multiplication of Signals
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w(t)
X(t) = sin wt

| ; AWAWANE
) BRVAAVAV.

(a)

.
—

: . 9=t
= — m

T vl = ——=cosmt

S
T AR

() - W

-y
o |

Fig. 2.28 Differentiation (a) Square Wave (b) Sinusoidal Wave
(c) Differentiated Square Wave (d) Differentiated Sinusoidal Wauve

2.3.5 Integration on Signals

The integration of an input signal x(r) with respect to time (1) is defined by

¥(1) = _[x{.'}dr

Example The vultage v(1) developed across the capacitor is a dEnVatw-E of the current i) flowing through
the capacitor C. i.e. .

.I ) .
== _[i{!]tff (2.36)

The integration of a continuous-time signal x(¢) is equivalent to summation of discrete-time signal x(n).
yn) = xtn) (2.37)

The integration of square wave and cosinusoidal wave are illustrated in Fig. 2.29 (a) and Fig. 2.29 (b) respectively.
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ox(t)
4 x(t) = coset
: \ARA
! VAAVAAVAR
(a) (b}
b oylt) = [x(edt

4 it} = [={0)dt=sinest

dwd |
A\ U/\U[\U

(c) ()

Fig. 2.29 Integration (a) Square Wave (b) Cosinusoidal Wave
(c} Integrated Square Wave (d) Integrated Cosinusoidal Wave

2.3,6 Time Scaling of Signals

"1r
—

Consider a continuous-time signal x(¢) as shown in Fig. 2.30. Let us introduce a time scaling factor § to the
continuous-time signal, i.e.

yit) = x( fr) (2.38)
where [ = scaling factor (if [ <1, then the signal expands; if f>1, then the signal compresses).
4 X[1) I
-2 -1 0 1 2
4 x(12) 4 x{21) B=1
' + 4 + i —= | i /\ 4 !
-2 -1 0 1 2 -2 -05 |0 05 1 2
(&) (b)

Fig. 230 TimeScaling (a) B<1 () f>1

Consider a discrete-time signal x(n) as shown in Fig. 2.30. Let us introduce a time scaling factor § to the
discrete-time signal, i.e.
y()=x(fn) (2.39)
where § = scaling factor (if 8 <1, then the signal expands; if £ >1, then the signal compresses.)
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2.3.7 Reflection of Signals

Consider a continuous-time signal x(¢) as shown in Fig. 2.32(a). Let 3(1) denote a signal obtained by replacing
t by =t (time-reflection) to the continuous-time signal, i.e.

wi)=x(-) (2.40)

If x(-¢) = x(r) for all values of r, then the reflected signal is an even signal, or if x{—) = —x{) for all values of
7, then the reflected signal is an odd signal.

Consider a discrete-time signal x(n) as shown in Fig. 2.32(b). Lety{n) denote a signal obtained by replacing
n by —n (time-reflection) to the discrete-time signal, i.e.
v(n) =x(-n) (2.41)

If x(=n) = x(n) for all values of n, then the reflected signal is an even signal, or if x(=n) = =x(n) for all
values of », then the WMﬂ signal is an odd signal.

 x{t) x{~t)

// Reflected signal \\ -
N 0 M t oy o N !
{a)

x(n) x{-n})
[

Reflected signal

LA

0| 0
(b)

Fig. 2.32 Reflection of Signals (a) Continuous-time Signal (b} Discrete-time Signal

2.3.8 Time Shifting of Signals
Consider a continuous-time signal x(r). Let y{r) denote a signal obtained by shifting the signal x(1) by (r- 1),
that is,

WO=x(t-1) (242)

If the signal x(r} is positive, and ¢ > 0 for all values of 7, then the signal is said to be right-shifted signal.
In the example shown in Fig. 2.33(b), the signal is shifted to right side by 3 units.
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[f the signal x(¢), is positive, and 1,< 0 for all values of 1, then the signal is said to be left-shifted signal. In
the example shown in Fig. 2.33(c), the signal is shifted to left side by 4 units.

x(1)
b

"-E—5—4—3—2—1IDIEEIEE_

(a)
Y1 (U=x(t-3)=x(t-(+3))

2 __ right shift by 3 units
1 f

—Ew—ﬁ-ll-—ﬂ---ﬂw—ll‘_lﬂl 2 3 4 5 6
41-| —_n
3units © Shifted right

(b)

Ya(t)=x(t+4 j=x(t-{-4))

—_/—— 2 L left shift by 4 units
1

el

£ -5 4-3-2-1 |01 2 3 4 5 8

-

Shifted left 4 units
(c)

Fig. 2.33 (a) Original Positive Signal x(1) (b) Right-shifted Signal x{t-3) (c) Left-shifted Signal x(t+4)

If the signal x(-r) is negative, and 7,>0 for all values of 1, then the signal is said to be left-shifted signal. In
the example shown in Fig. 2.34(b), the signal is shifted to left-side by 3 units.

If the signal x(—/) is negative, and £,<0 for all values of ¢, then the signal is said to be right-shifted signal.
In the example shown in Fig. 2.34(c), the signal is shifted to right-side by 4 units.

4x(-t)
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1 ya(U=x(-1-3)

- is—n-aiz-:'_.u;é,é:ashér "
Shifted left 3 anits
(b)
yaf h=x{-t+4)
2
|
- -e:-.l-t-'a-'e-iluiégis'a-.: "t
4units  Shiked right
{c)
Fig. 2.34 (a) Original Negative Signal x(-t) (b) Left-shifted Signal x(-t-3)
(c) Right-shifted Signal x{-t+4)

The above analysis also holds good for discrete-time signals. Let us consider a discrete-time signal x(n).
Let y(n)denote a signal obtained by shifting the signal x(n) by (n ~ n ), that is
y(m)y=x(n—ny) (2.44)
Ifthe signal x(n) is positive, and i, > 0 for all values of n, then the signal is said to be right-shified signal.
" In the example, shown in Fig. 2.35(b), the signal is shifted to right side by 3 units.
If the signal x{n) is positive, and a_< 0 for all values of n_, then the signal is said to be lefi-shified signal.
In the example, shown in Fig. 2.35(c), the signal is shifted to left side by 4 units.

®(n)
1
5 3 a5 6 7 8 01011 12 n
(a)
} ?1{H}-l{n=ﬂl=!ln-{*~'!]]'
| T hTﬁT f Th[
12 3 4 & 9 101 12
3 units srurhdrigm'

- b)
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HHHHH}-H{H-HH
Llil shift by 4 units

L] .

*4—3-—2-1'12-34557591D1112
—
Shifted left 4u‘nh

(e}
Fig. 2.35 (a) Original Positive Signal xin) (b) Right-shifted Signal x(n-3) (c} Left-shifted Signal x(n+4)

Ifthe signal x(-n) is negative, and n,> 0 for all values of n_ then the signal is said to be right-shifted signal.
In the example shown in Fig. 2.36(b), the signal is shifted to !enﬁ side by 3 units.

If the signal x(-n) is negative, and n, < 0 for all values of i then the signal is said to be left-shifted signal.
In the example shown in Fig. 2.36(c), the signal is shifted to right side by 4 units.

x(—r)

1 4 10
(a)
yi{ny=x{-n-3)

AN

-4 =3 -2 23455?591{!

?,Em laft Aunis

yz{n)=x(-n+d)

4 units Shified right
(e)

Fig. 2.36 (a) Original Negative Signal x(-n) (b) Left-shifted Signal x(-n~3)
fc) Right-shifted Signal x{-n+4)

2.3.9 Time Shifting and Time Scaling
The time shifting operation is performed first on x(¢) resulting in an intermediate signal v(1).
w(f)=x(t—b) (2.46)
Next, the time scaling operation is performed on v(1). This replaces ¢ by at resulting in the desired output.
w0 =vlar) = x{at - b) (247
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SOLVED PROBLEMS _ _ _ _

Problem 2.33 (1) Find x(2t + 3) for a given signal x{1).
Solution

Step (i) x(r+3)=x[t-(=3)]

(1)

=1 0 1

Step (i) Time shiftx{r+3)
x(t + 3)

"4 324 0
Step (iii) Time scalex(2i+3)
dx(2t + 3)

11

Lower Bound Upper Bound
N+3=-] 2A+3= |

2p=—4 2= -2

. f=-1 t=-1

(ii) Find p(t)=u [% + 3] for the signal given in Problem 2.32 (a).

Step(i) x(r+3)

#t + 3)
1

-4 -3 -2 -1 0
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Step (ii) u[%+3]
' x( 5 +9)
T+1
e R {-—d= - o !
= 7T - 54 =3-2-1 0
Lower Bound Upper Bound
H2+3=-1 2+3i= |
2= Hﬁn:...l
1=-8 1=—4
Problem 2.34 Find x(21-3) for the given signal x().
Solution
Step (i)
x(t}
2
1
- =
0 ‘.i 3 .
Step (ii)
 x(t - 3)
-3
— 1! -
'D| 1 2 3 4 5 & 7T
Step (iii) .
x(21 - 3)
2
1- LI |
o 1 2 3 4
Bound | Bound 11 Bound 111
Lower Upper Lower Upper Lower Upper
Bound Bound Bound Bound Bound Bound
21=3=10 2=-3=1| =-3=T|X%=3=2 |u=3=2 2=-3=3
2t=3 2= 4 2i=4 2t=5 =35 2i=6
i=1.5 tm2 =12 r=25 =25 r=3
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. (14
Problem 2.35 Find ’[T] for the signal given in Problem 2.33,

Solution
Step (i)
x(1-2)
2
- 1 —
- 2. +—t
0 1 2 3 4 5 &6
x(5-2)
2
Step (ii) | 1 . .

0 1 2 3 4 5 6 7 8 9 10 ¢t

Bound 1 Bound 11 Bound I11

Lower Upper . Lower Upper Lower Upper
Bound Bound Bound Bound Bound Bound

W =2=0Q2=-2=1| t/2=-2=1} 2 -2=22<2=2| 1f2-2=3
if=2 2=13 /2=3 =4 t2=4 W2=135
=4 t=0 (=6 t=8 =8 =10

Problem 2.36 Find x(3t+2) and .r[% + 1] for the given signal x(¢).

Step (i)
T x{l
3
2 Il
LR
0o 1 2z 3
Step (ii)
4 xit+2)
3
2
1
230 1 8
Step (iki)
i 4 x{(3t + 2)
3
2
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Bound | Bound 11 Bound IT1
Lower Upper Lower Upper Lower Upper
Bound Bound Bound Bound Bound Bound
M+2=0 [J+2=] |J+2=] +2=2|J+2=2|3+2=3
3 =-2 3= Y=-] 3t=0 =0 3=
==/ t==1/3 i==113 i=0 1=0 =13
-
Step (iv)
4 2t + 2)
£-54-3-£-1 0 1 2 3 )
Bound § Bound 11 Bound 11
Lower Upper Lower Upper Lower Upper
Bound Bound Bound Bound Bound Bound
Fi+2= 0|3 +2= 1|#M3+2=1| #3+2=2| /3+2=2|t/3+2=1
13 ==2 Hli==1] 13=-1 3=0 fi=0 =1
f==h r==3 ==3 t=0 =0 (=3

B 2.4 TYPES OF SIGNALS

"

In this section, we shall study the various basic signals necessary to construct different signals, which are
necessary for the system analysis. The basic signals are as follows:

|. Exponential signal

(1) Real exponential signal
(i} Complex exponential signal
Sinusoidal signal

Step signal -

Impulse signal

Ramp signal

N

24.1

Real exponential signal {continuous-time signal)} A real exponential signal x(1) in its most general form
1s represented by

Exponential Signal

x(r)=Be (2.48)
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where B is scaling factor, (real parameter) and « is real parameter. Depending on the value of o, a real
exponential signal can be further divided into two more signals.

For o <0, the magnitude of a real exponential signal decays (decreases) exponentially and is illustrated in
Fig.2.37(a).

For > 0, the magnitude of a real exponential signal rises (increases) exponentially and is illustrated in
Fig.2.37(b).

rit] . !ﬂ]'

N

(a) (b) .
Fig. 2.37 Continuous-time Exponential Signal (a)a <0, (b)a >0

Example Charging of a capacitor is an example of a growing exponential signal, and discharging of a capacitor
is an example of a decaying exponential signal.

Real exponential signal (discrete-time signal) A real exponential signal x(n) in its most general form is
represented by

x(n) = Ba" (2.49)
where B is scaling factor, (real parameter) and o is real parameter. Depending on the value of «, a real
exponential signal can be further divided into four signals.

For @ > 1, the magnitude of a real exponential signal rises (increases) exponentially and is illustrated in
Fig.2.38(a).

For 1 > & > 0, the magnitude of a real exponential signal deca].-'s (decreases) mq:rune:ﬂlnlly and is illustrated
inFig. 2.38(b). .

For 0 > a > -1, the magnitude of a real exponential signal decays (decreases) exponentially. For each
integer value of n, the signal is represented alternatively and is illustrated in Fig. 2.38(c).

For @ <-1, the magnitude of a real exponential signal grows (increases) exponentially. Fur each integer
value of », the signal is represented alternatively and is illustrated in Fig. 2.38(d).

$ x(n) x(n)
e (ETEX
HHJH h n[“”llﬁ

(a) (b}
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4 xS
l [ ot ] ‘ I
l L [T 1 T [ [ |

(© (d)

Fig. 2.38 Discrete-time Exponential Signal
fala=>1, (b)l>a>0 (c)0>a>=], (da<=]
Complex exponential signal (continuous-time)} Let us define an expuhemial signal as
x(1) = g/ (2.50)

An important property of this complex exponential signal is its periodicity, i.e.
el _ o JtlI+T)

el o0 g joa, T
We know that,I
e!™" = cos(w,T) + jsin(w,T) =1
If @y, =0, t-hen x(ry =1, which is periodic for any value of T,

If @y # 0, then the fundamental frequency w, of the signal is the smallest positive frequency for which the
equation @y =27, holds good.

Complex exponential signal {(discrete-time) Let us define an exponential signal as
() =Ca” (2.51)
where C = scaling factor, complex parameter

a = ¢’ complex parameter

2.4.2 Sinusoidal Signal (Continuous-time)

The continuous-time version of a sinusoidal signal x{¢) in its general form may be written as
X ()= Acos(ax +¢) (2.52)
where A = Amplitude of the signal x(1)
w = Frequency of the signal x(r) (radian/s)
¢ = Phase angle of the signal x{(v) (radians)
and is illustrated in Fig. 2.39. ‘
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&

4 x(tj=hA cos {wl+o)

ole—— phasedelay, o

(AW
vAYA

. =

A

Ts %
Fig. 2.39 Continuous-time Sinusoidal Signal

A sinusoidal signal is an example of a periodic signal, whose period T = %ﬂ. :
In order to prove the periodicity of the sinusoidal signal, Ia;:t us consider a continuous-time signal

x(1) = Acos{wt +¢) _ ' (2.53)
which repeats every T second, i.e.

x(t+T)= Acos{elr+T)+¢)

x(t+T) = Acos(ax + 0T +¢)
For T = L (one cycle)

1)

Then, the equation reduces to .

x(f+T)= Acos{ow +¢_r} = x(t) (2.54)
Similarly, let us consider a discrete-time signal

x(n) = cos(Qn+ ¢) (2.55)

which repeats every T secdnd, i.e. -

x(n+ N)= Acos(SH{n+ N)+¢)
x(n+ N)= Acos(Qn+ QN +¢)

where 3 = Angular frequency for a discrete-time signal
For N = %Im {one cycle)

x(n+ N) = Acos(Ldn+21tm + ¢)

Then, the equation reduces to

x{n+N)= Acos(n+ ) = x(n) (2.56)
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Complex exponentiatrepresentation of sinusoidal signal  The complex exponential sngml can be expressed
in terms of sinusoids as
e/ = cos(ax) + fsin{ox) . {2,5'!].

o=l _ cos{axX)— fsin(ax) . (2.58)
Acos(an +¢) = g{gr‘tm-} +E'Jll.l'~ril)

Acosiar+ )= 5 {e=e" +e )

Acos(ar +¢) = Re{4e/"*?) (2.59)
Asin(ex +¢) = Im{Ae/ "9} - (260)
Similarly, for discrete-time signals, the complex exponential signal can be expressed in terms of sinusoids
as
e/ = cos (Qn) + jsin (L2n) . (2.6D)
™/ = cos(Qn) - jisin () (2.62)

Similarly, the discrete-time sinusoidal signal can be written in terms of periodic complex exponentials, again
with the same fundamental period, {0

Acos(Qn+¢) = [gﬁﬂ"*'l + M) ]
Acos {ﬂn+¢] = E(gf“'ﬁ-# 4 poitn g ie ]
Acos(n+¢) =Re{de" "} (2.63).

Asin(Qn+¢) = Im { Ae/"™"*#) (2.64)

Exponentially damped sinusoidal signal When a real value decayed exponential signal is multiplied with
a sinusoidal signal, it results in an exponentially damped sinusoidal signal. This can be represented by

x()=Ae™ sinfwr+¢) x>0 (2.65)
and is illustrated in Fig. 2.40 (a).
Similarly, for discrete-time signal, an exponentially damped sinusoidal signal can be represented by
x(m)=Ae" sin(Qn+¢) a>0 (2.66)
and is illustrated in Fig. 2.40 (b). |
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(a) (k)

Fig. 2.40 Exponentially Damped Sinusoidal Signal
(a) Continuous-time Signal, (b} Discrete-time Signal

2.4.3 Step Function

The continuous-time step function is commonly denoted by u(r) and is defined as
u(t) = 1, 20 ‘
1o, 1<0 (267)

and is illustrated in Fig. 2.41 (a).
The discrete-time step function is commonly denoted by u(n) and is defined as

() = I, nz20 .
=10, ne<o (2.68)
and is illustrated in Fig. 2.4 1(b).
$ u(t) 4 yn)
1 1

Ll ||

I

4
(a) ()

Fig. 2.41 Step Signal
(a) Continuous-time Signal (b) Discrete-time Signal

[ e ]

5§ 6

The step function shows discontinuity at £= 0 (n = 0 for discrete-time) in case of continuous-time step representation.

2.4.4 Impulse Function

The impulse function is a derivative of the step function ({t) with respect to time, Conversely, the step function
u(r) is the integral of the impulse with respect to time. The continuous-time unit impulse function is commonly
denoted by &(¢)and is defined as
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é{:}=ﬂ. t#£0 (2.69)

and fﬂr}n'r =1 (2.70)

Equation (2.69) says that the impulse 8(f) is zero everywhere except at the origin, and equation (2.70) says
that the area under the unit impulse is unity. The impulse function is also known as the Dirac delta function and
is illustrated in Fig. 2.42(a).

The discrete-time impulse function is commonly denoted by &(#x) and is defined as

l, n=0 .

From equation (2.71), the impulse &{n) is zero everywhere except at the origin, whose magnitude is unity.
The impulse function is illustrated in Fig. 2.42(b).

- B(t) . s ()

Al 1

0 t n

n=0

(a} {b)

 B(n-nyg) t B(n+ng)
11 = B

0 Ny -I-II =My :l-'l
(=) (d)

Fig. 2.42 Impulse Signal
(a) Continuous-time Impulse (b} Discrete-time Impulse
(¢} Discrete-time Input Shift by +n, (d) Discrete-time Impulse Shift by - n,

2.4.5 Ramp Function
The integral of the step function u(r) is a ramp function of unit slope.
The continuous-time ramp function is commonly denoted by Af) and is defined as

f, =20

r{!]={n, t<0

(2.72)

and is illustrated in Fig. 2.43(a).
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The discrete-time ramp function is commonly denoted by r(n) and is defined as

(n) = n nzl )
=10, n<o (2.73)
is illustrated in Fig. 2.43(b).

F 3 r‘.t} . F 3 rln} 1 &

a Illls "n

68 7 8 8 10

(a) (b)
Fig. 2.43 Ramp Signal
(a) Continuous-time Signal (b) Discrete-time Signal

B 25 SYSTEM :

A system is an entity that manipulates one or more input signals to perform a function, which results in a new
output signal. A typical prototype of a system is shown in Fig. 2.44,

X[t}
; 1 SE— |}
Input signal Loy oo Output signal

Fig. 244 Basic System

In a communication transmitter, the system accepts message signal (audio, video or data), processes it
(modulation and filtering), and gives an acceptable output for communication. A. typical prototype of
communication transmitter system is shown in Fig. 2.45.

Antanna
Audio ]
Video Transmitier

Data

Fig. 2.45 Communication Transmitter System

An electrocardiograph is a system which collects electrical potential from the surface of the heart, processes
and filters it, and gives an electrical output for diagnosis. A typical prototype is it shown in Fig. 2.46.

Fig. 2.46 Electrocardiograph
Specifically, a system is an interacting group of physical objects or conditions called system components.
The system accepts one or more input signals or parameters, and produces one or more output signals or
quantities.
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B 2.6 PROPERTIES OF SYSTEMS

The properties of a system help us to understand the characteristic of the operator (say H) operating/representing
the system. Following are a few basic properties of systems. Based on the properties, the system can be

classified as

. Continuous-time and Discrete-time system
2, Stable and Unstable system

3. Memory and Memoryless system

4, Invertible and Noninvertible system

5. Time-variant and Time-invariant system

6. Linear and Monlinear system
7. Causal and Noncausal system

2.6.1 Continuous-Time and Discrete-Time System

Continuous-time system If the input and output of the system are continous-time signals, then the system
is called 'Continuous-time system’,

Let us consider an input signal x(r) to the system. If the system produces an output signal y(f), then the
system is called *Continuous-time system”,

x(1) H[] p———av¥il}
Input signal Output signal

Fig. 2.47 Continuous-time System

Discrete-time system If the input and output of the system are discrete-time signals, then the system
is called *Discrete-time system’,

Let us consider an input signal x(n) to the system. If the system produces an output signal y(n), then the
system is called ‘Discrete-time system’.

x(n) H[] p——*Y¥in

Input signal : Cutput signal
Fig. 2.48 Discrete-time System

2.6.2 Stahle and Unstable System
Stable system A given systemvis said to be stable if and only if every bounded input produces a bounded
output. The stable system is also known as *Bounded Input-Bounded Output® (BIBO).

Let us consider a system operated by an operator H[-]. The system is said to be stable if the bounded
input x(#) produces bounded output y{/), i.e.

if |x(1)] < M, <o foralls (2.74a)
then |¥(0)] < M, <o foralls (2.74b)
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A similar analysis holds good for a discrete-time system also, i.e.

if |x(m)| <M, <==foralln (2.75a)
then ' Ij{ﬂ]'SMy-:mﬁJr all n (2.75b)
A bounded input always has a finite value at infinity. The following are a few bounded signals.

x(t) 4 x(t) a

| ﬂ[\f\r\,_
E— UUU\J.

Fig. 2.49 Bounded Signals
"~ {a) Decay Exponential (b) Sinusoidal Signal

(a)

Fig. 2.4%(a) shows an Exi:ﬂnmtial decay signal whose value is finite as r — «=. Similarly, Fig. 2.49(b) is a
sinusoidal signal that maintains the finite magnitude as ¢ — =,

(1) 4 ‘ (1) +

() (b)

(c)
Fig. 2.50 Unbounded Signals

. {a), (b) Rising Exponential
(c) Sinusoidal Signal with Exponential Rising Magnitude

Fig. 2.50 shows the various types of unbounded signals. Figs. 2.50(a) and (b) are rising exponentials
whose values are infinite as t—sc, Most of the unbounded signals exhibit divergent property. Fig. 2.50(c) too
is an unbounded signal as the magnitude of the sinusoid increases as § — o,
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SOLVED PROBLEMS _ _ __ __ __ __ _ _ _ _ _ _

Problem 2.37 Determine whether the given system h{n) = " u(n} is stable or not.
Solution For stability, the response of the s:rstem h{n) must be absolutely summable. i.e.

E [ﬁ{n}]qm

z |a"u[n}|e::m

N -

|n"|——-¢:m if [a|<1
pui]

There, the given system is unstable if and only if |a| < 1.
Problem 2.38 Determine whether the given system h(n) = e™u(n) is stable or not.
Solution For stability, the system response h(x) must be absolutely summable, i.e.

Y | hin)|< o0

===

i |e""'u[n}i:: co

e

Z|¢“" -—-cn-n if |a I{l

H=i
Therefore, the given system is unstable.

Problem 2.39 Test whether the following discrete-time systems are stable or not.
(i) M) =2"u(n-3) (i) hy(n)=e""u(n-4)
(ii)) by (n)= 2" (iv) Ay (n)=nu(n)
(V) hg(n)=3"u(-n) (Vi) hg(n) =0.2"u(n-3)
Solution The general condition for stability is 2, | x(n)]<==.
@) h(n)=2"u(n-3)

The condition for stability is E

=3

2"

Y2 =2 +2' 420+ 42" =

=1

Hence, the system is stable.
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() hy(n)y=e"u(n-4)

The condition for siability is 3"

med

D = +e’ el re’ vttt =
n=4

Hence, the system is stable.
(i) hy(m) =
 The condition of stability is 3 [e™] < e

fH=—m

i el = i e 4 ie‘l‘

"2

o oo

LT M= =l

- . | - ' . i ﬁ*
,,.E_.E_M =,§‘_=h +J§]¢“T" Hint Eﬁ" =T-'"*| B |<1
i g2 =ie'h+i:'1"
A m=| n=0

- et 1 1+e”*

E E-Elnt=l--e.'1 +I-e': =I-~=‘1 N

7 = —a=n

Hence, the system is stable.
(iv) hy(n) = nu(n)
The condition for stability is 3| n|<e
n=

Zn=ﬂ+l+ 243+, .+ =0

=i

Hence, the system is stable.
V) hy(n)=3"u(-n) }

[
The condition for stability is “Z__ 3

< o3

n=— =l n=l

L U<

,,,E;_E a3y 2°°7
Hence, the system is stable.

(vi) k() =0.2"u(n-3)

The condition for stability is 3 (0.2)" < e

Pk

3 v-5-5(3) mine 35 =L <
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o 3
2. (0.2)" {n=%=u.m < oo

n=3 =

Hence, the system is stable.

Problem 2.40 Test whether the following continuous-time systems are stable or not.

i) A(@)=e™ (ii) Ay (1) =e"u(t+4)
(i) hy()=e"u(r-4) (iv)  hy(r)=te “u(r)
(V) hs(r)=re""u(r) (Vi) hg(t)=e""cosbr u(l)

(vil) hg(t)=e “sin bt u(n

Solution The general condition for stability is I | A(1)| dt<ee.
ﬁ] h| [I,} - e-r{ﬂ -
The condition for stability is j' et < oo

—

[t = [ etdrs feetra
=0 0

i

JE“'i'H;;i ‘7‘"|ﬁI PRLEPCT
— a -

- 1]
e 1 PR o -0
e ldl=— - -
J Hl:e e :’ a[e E]
e g =Lp-01-Ljo—1
Jeta=Lp-0)-Lpo-1)
ey 1,1 2
_"'_ a i

Hence, the system is stable (a#0).

(1) h()=e"u(t+4)
The condition for stability is I e® [ dt < oa

-4 .
'e"a'.*=le*‘|"

. 2 ™

T ) P
edi=—(e"-e" )=e=
)

Hence, the system is stable.

Hint Since e™ =
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(i) hy(r)=eVu(t-4)

T -
The condition for stability is _” :""i dl < oo
4

L) m
L
(=8
tl
I
- I —
| S
L]
L]
b
Lr]
1
=
|

H:n:e,' the system is stable.
(iv) hy(ty=te “u(t)

The condition for stability is j’ | reldt <o
1]

Applying Bernouli’s theorem -

-

I.‘#'"ra'-' =12
1 -

o & !.: Hint Iu.vd’r =ty —u'v+ "y,

=[I]—{}]—[ﬂ—~|—:j| v, =J'-'|:fi',1»'._. =_[v, dt

(1)

i

' l
J-‘e""u‘r m—
il

il

Hence, the system is stable.
V) hs(0)=rte""u(t)

The condition for stability is _ﬂ te” |t < o
]

Applying Bernouli's theorem

Hint Iu.vdr =, —u'v+u“v]... )

- o E.‘r
Jredi=1.—
o b v, =J'wff.v,=ju, dlt

a

Ll

T.I’t'"d.‘ = oo
1]

Hence, the system is stable.
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(Vi) hg(r)=e “cosbru(t)

The condition for stability is jl e™ cosbr |-ﬂ"f <o
0

b o b
Hint Jemcnsmtﬁr =53 [gcos{cx)+esin(ex)
. g +c .
- —ai e
Je™cosbrdr= { : +[-acosbt+bsin b:]}-'
o a +b 0
Ie'"‘:usb: di =— ! :r{ g™ [~acos(eo)+ bsin(ea)]
2 a +b
~e”[-acos (0)+bsin (0)]}
T |
e “cosht dt =
El,- a’ + b [ﬂil
je""cusb: dt=— a 5 <o
9 a +b
Hence, the system is stable.
(vil) hy(t) =e™"sin bt u(t)
The condition for stability is,
e =il
It""’sin bt dt = {——— [asin bt - beosbi]
o a“+b v

f

r £x
Hint Ia"’sin exde= : 5[ g sin (ex) - ccos ex]
] g *c ]

1
a’+ b’

Fe"‘" sin bt df = [e_"(-asinm-bmsm]]
0

F[c‘:I (—asin0-bcos ﬂ]]

T . 1 b
e “sinbtdi =————<(b)=——F <=
-!; a’ +b° a® +5°

Hence, the system is stable.
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2,6.3 Memory and Memoryless System
Memory system The given system is said to possess memory if the output of the system depends on past

and future values.
Examples Wi} =x(t) +x(r=1)+x{r+1)
dx(r)
YO==a

y(n}=§[x{n}+ x(n=1)+x(n+1)]

yiny=x(n=1)=x(n+1)
The memory system is also known as a ‘Dynamic System’. An inductor has memory since the charge is
stored as current. The current i(f) flowing through it is related to the applied voltage (1), i.e.
di(r)

Ot

where L = Inductance of the inductor
Similarly, capacitor is a memory element, which stores the charge as voltage. The voltage across a capacitor
is related to the current flowing through it, i.e.

i) = cd"’f”
where C = Capacitance of the capm:itnr'
Note The analogous to differential equation in a continuous-time system is a difference equation in the
discrete-time system.

0 & yin-1)-

Therefore, the differential equation is a memnr:-,f system.
Memoryless system The given system is said to be memoryless if the nutput of the system depends solely
on the present value.

Examples
(1) = x(1)
OEES ()
y(n) = x(n)
y(m) = nx(n)
The memoryless system is also known as a ‘Static System’. A resistor is a memoryless system since the
current flow i(¢) flowing through it is proportional to the applied potential, i.e.

i) ="22

where R = Resistance of the resistor
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2.6.4 Invertible and Noninvertible System

Invertible system A system is said to be an invertible system if the input signal given to the system can be
recovered,

The concept of invertibility is illustrated in Fig. 2.51.

y(t)
) —— M. - . X(1)
Input signal X Output L b Hngmmad

Fig. 2.51 Invertible System

Let us consider an example of a communication system shown in Fig. 2.52,where the signal is modulated
with a carrier signal and transmitted through the transmitter system. The same signal is recovered at the
receiver system by demodulating the signal from the carrier signal.

(1) J  Transmitter yit) Racaiver
system syslem

= (1) = x(1)

Fig. 2.52 Communication System

All the transforms used in signal processing are invertible system. |

Noninvertible system A system is said to be noninvertible if the input signal given to the system cannot be
recavered from the output signal of the system.

The square-law system is generally a noninvertible system, except for the distinct inputs.

2.6.5 Time-invariant and Time-variant System

Time-invariant system A system is said to be time-invariant if the input signal is delayed or advanced by
any factor that leads to some delay or advancement in the time scale by the same factor, i.e. the system
responds to an input which is given at any instant of time and results in an output.

xit-1) ¢ R |
. ['=|':' ﬂm:-y;r;;a“ﬂant =p .
1 (a) T — -
x(t) 4 yit) &
et | TImEvarant = -t
L ) -
xin +nyg) yin+n_) '
s - -: n Time-Invarfant o “ _r_
LU I e, . LLLLIIT

systemn Ng 0 | 1 2
{c)

Fig. 2.53 Basic Time-invariant Systems
(a) Delayed Time-invariant System (b) Time-invariant System
(c) Advanced Time-invariant System
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Let us consider three time-invariant situation depicted in Fig. 2.53. Fig. 2.53(a) illustrates a delayed pulse output

( Tsec) produced by a system for a delayed pulse input of Tsec. Fig. 2.53(b} illustrates a pulse output
produced by a system for a pulse input where in delay is not incurred neither in input signal,
Fig. 2.53 (c) illustrates an advanced discrete step output produced by system for an advanced discrete step
input. Any other combination (input and output combination) of the system is time-variant system.

SOLVED PROBLEM _ _

Problem 2.41 The input-output relation is given by (1) =sin [x{:]] . Determine whether the system is time-
invariant or not.

Solution
yit) =sin [x(r)]
Let us assume the signal of the form
» (6 =sin[x ()] (1)
Let us introduce time delay ¢, in the input signal in equation (1), then

3 (= X (r— IIrJ-:|
The delay input therefore results in the output

y2(0) =sinle; (0] =sinlx (1~ 1) @)
Let us introduce the same time delay ¢, in the output of the equation, i.e.
it —tg)=sin|x(r - 1) (3)

On comparing equations (2) and (3),

yalt)=ylr=ty)
Hence, system is time-invariant.

Time-variant system A system is said to be time-variant if the output signal is delayed or advanced with
respect to input signal as shown in Fig. 2.54,

- x(1) 4 yit)

DU&T" <[ #D\/ﬂk "

Fig. 2.54 Time-variant System
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SOLVED PROBLEMS _ __ __ __

Problem 2.42 The input-output relation is given by y(f)=1x(f). Determine whether the system is time-

variant or not.
Solution
) =1x(t)
Let us assume the signal of the form
»it)y=ix(r)

Let us introduce time delay ¢, in the input signal in equation (1)
x ()= x(t—1y)
The delay in input results in an output
Let us introduce the same delay £, in the output of the system
) ML= )x (1-1)
On comparing equation (2) and (3),

ya(n) = pr—ty)
Hence, the system is time-variant.

Problem 2.43 Determine whether the following systems are time-variant or not.

@  p(£)=x(r)sin ax (i) y()=x(4)
(i) y(r)=e"" (iv) y(t)=r*x(t)
Solution |

() pt)=x(r)sinex
(e) = Tlx(t)]=sin ax x(1)
Introduce time delay 7, in the input, i.e. |
x (1) =x(r-1y)
»{t)=sin o¥ x, (¢) = sin ax x(f — 1)
Introduce time delay ¢, in the output of the equation, i.e.
yE=tg)=sinan{t—ty) x(t—ty)
On comparing equations (2) and (3),
»(0) # ylr —1y)
The system is time-variant.

(-

()

(3)

(1)

(3)
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(@) y(2) = x(dr) (4)
Introduce time delay 1, in the input, i.e.

x(41) = x [t —1y)]

¥i (1) = x,[4(1 —13)] ' {(5)
Introduce time delay ¢, in the output of the equation, i.e.
yit —1y) = x[4(r - 1)) (6)

On comparing equations (5 ) and (6),
ny=ylt-ty)
The system is time-invariant,
(i) p(r)=e"" (7)

¥y =Tx()]=e™
Introduce time delay r, in the input, i.e.
x(y=x(t—1,)
_].-’lif]=¢rl{r} =‘:t“hl“= EE]

Introduce time delay #_in the output of the equation, i.e,

wr-1,)= ") (9

On comparing equations (8) and (9),
nir) = ylt—fy)
The system is time-invariant.
(W) y(t)=1*x(1) (10)
Yy =Tlx(n]=x(1)
Introduce time delay ¢, in the input, i.e.
nr)=x(r—1)
then wi)=x () =1x(t—1,) (1)
Introduce time delay ¢, in the output, i.c.
¥lt=15)= (= 16) ¥t = 14) (12)
On comparing equations (11) and (12),
wit)# y{t=1y)

The system is time-variant,
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Problem 2.44 Detetmine whether the following systems described by the given differential equations are
time-invariant or not.

2
d .]"I':f]' ﬂ'}’(lr:'_l_y{:] x{..}

U

dr?
2
@ 200200 =x0)
3 Z
i) 4 ;” 2 ddj}f‘} D) | iy =xy+ E0 ‘M”

Note The differential equation mdu:mes that the time-invariant system must have constant coefficients, If
the coefficients are time-dependent parameter, then the system is called a time-variant system.

Solution

2.,
0220 0= x00)

Since the cn:fﬁcl:nts are constant multiples, the system described by this differential equation is a
time-invariant system.

U

2
(i) d; ;:I} +2r ﬂr] + y(1) = x(t)

Since the coefficient of the second term is a time-dependent parameter, i.e. 21, the system described by
the given differential equation is a time-variant system.

'y, zﬂrI}’m ufm} dx(t)
Gy ¢ dr dr p

Since the coefTicients of the first three terms of the differential equation is time-dependent, the system
described by the given differential equation is a time-variant system.

Problem 2.45 Determine whether the followin g discrete-time systems are time-invariant or not.

() n)=cos [x(n)] (i) yn)=In[x({n)]
(i) (m) =x(n)=x(n-1) (iv) W) =x(n)x(n+1)

+ (1) = x(1) +——

Solution

(Y pn)=cos [x(n)] : (1)
wn) =T [x(n}] = cos [x(n)]

Introduce time delay n in the input, i.e. .
x(n) = x(n-ny)
then ' »(m =cos[x; (m)] = cos[x(n—ny)] (2)

Introduce time delay #, in the cutput of the equation (1), i.e.
y{n=ny) = cos[x(n—ny)] (3)
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On comparing equations (2) and (3),
¥ (n)= y(n = Hy)

The system is time-invariant.

(i) y(m)=In [x(n)] (4)
y(n) =T [x(m)] = In [x(s)]

Introduce time delay n, in the input, 1.e.
_ X () = x(n= ;) - ()
then yi(my=n[ x(m]=In[x(n-ny)] (6)
Introduce time delay #, in the output of equation (4). i.e.
y(n=ny)=In[x(n-my)]
On comparing equations (5) and (6),
win)=yln-ny)
The system is time-invariant.
() y(n)=x(n)=x(n-1) (7)
Introduce time delay n -in the input, i.e, '
x{m)=x(n-D=x(n-ny)-x{n-1-ny)
then wimy=xn)—xyn-y=x(n=ny)—x(n-1-ny) (8)
Introduce time delay n, in the output of equation (7), i.e.
y(n=ng)=x(n=ny)—x(n—-1-ny) (%)
On comparing equaiinns (8)and (9),
| yi(m) = yln=ny)

The system is time-invariant.
(iv) p(m)=x(m)x(n+1) (10)

Introduce time delay ny in the input, ie.
nimxn+l)=x(n-n) x(n+l-ny)
then ¥ =x(m) x;(n+1)=x(n—my) x(n+l-ny) . (11}
introduce time delay r, in the output of equation {10}, i.e.
vin—ny)y=x(n—ny)x(n+1-n,) (12)
On comparing equations {1 1) and (-12), |
hm=wn-rp)

The system is time-invariant,



ISS-T0 e Digital Signal Processing

Problem 2.46 Determine whether the following systems are time-invariant or not.

(i) »i)= é j:(t}:ﬁ' [where C is capacitance of the capacitor]

(i) yi)= % [where R(¢) is resistance of the thermistor]
Solution
] i
(i) y[r}=-ij[r]dr (n
y0) =T [x(x)]=— jrm d
l:l =g
Introduce time delay i in the input, i.e.
x(ty=x(t—1)
y{;}:ij(t]=L j‘:{r—r ydt (2)
Introduce time delay 1, in the output of equation (1), i.e.
| i
_]—f{.'—-!'n]=-E :[' xX{(T=1y)dt (3)
On comparing equations (2) and (3),
niy=yi-t,)
The system is time-invariant.
(i) yi)= R(O)
- =X
yn)=T[x(r)] RQ) (4)

Introduce time delay ¢ in the input, i.c.

I.{f] =.ﬂ:f_'ln}

x (1) - x(f—1y)
R R ©)

Introduce time delay ¢, in the output of equation (4), i.e.

then »wi)=

I[I—-I'u] .
R(1-1,) (6)

wi—ty)=
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On comparing equations (5) and (6),
W= wWi-1)
The system is time-variant,

2.6.6 Linear and Nonlinear System

Let us consider an input x;(f) given to a continuous-time system which responds with y,(¢). Similarly, let us
consider another signal x, (¢) given to the same continuous-time system which results iff a response y, (7).
Then the system is said to be linear if

. The response to x,(t)+x5(t) is y(¢)+ y,(r) (additive property)
2. The response to ax(f)+bx,(r) is ay,(t)+by,(¢), where a and b are complex constants (scaling

property)
Mathematically,
T [ax, (1) + bxy (1)] = aT [x,(0)]+ 6T [x5(0)]
T [ax, (1) + bxy (1)] = ay (1) + bya (1) (2.76)
If an input consists of weighted sum of several signals, then the output is the weighted sum of the
responses of the system to each of those signals. -

Similarly, if two signals x,{n) and x,(n) given to a discrete-time system results in an output y,(n) and
¥, (n) respectively, then the system is said to be linear if .

T [ax,(n)+ bx, (n)]=aT [x,(m)]+ 6T [x,(n})]
T[ax(n)+bx;(n)] = ay, (n) + by, (m) (2.77)
The superposition property holds for a linear system in both continuous-time and discrete-time.

SOLVED PROBLEMS

Problem 2.47  Determine whether the given continuous-time system is linear or not.
wir)=1x(t)

Solution Let us define the input signal x;(r) whose response y,(f) is giw::; by
yi{t)=1x(r)

Similarly, let us define another signal x, () whose response y,(f) is

il

_ ya{t) =1x5(1)
The two defined signals are related by
x3(6) = ax (£) + bxy (1)
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Then the output y,(t) is defined as

yit)=1x;(¢)
3 (0) = t e, (0} + bxy (1)
yylt) = at x (1) + bt x5 ()

y3(0) = ay (1) + by, (1)

Therefore, the system is linear.
Problem 2.48 Determine whether the given continuous-time system is linear or not.

yry=tx(t)+k
where k is a constant.
Solution Let us define the input signal x,(¢) which results in an output y,(r).

»iy=tx()+k

Similarly, let us define another signal x,(f) which results in an output y,(f).
yi () =tx()+k

The above signals x,(¢) and x,(r) are related as
x3(0) = ax, (1) + bxy (1)

where a, b = constants

Then, the output y,{f) is defined as

yi(t)=tx;(f)+k

y3(8) =T [ax, (t) + bxy ()] + &
vty =atx () +btx, () + &
yi(e) # ay (£)+by,(r)

Therefore, the system is nonlinear.

Problem 2.49 Dﬂtﬂ:nnip: whether the given discrete-time system is linear or not.
Y =rx(n-1)
Solution Let us define the input signal x,(»—1) which results in an output y (n).
nm)=n'x(n-1)
Similarly, let us define another sigmal x,(n—1) which results in an output y, (n).

==
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The above signals x;(n—1)and x,(n-1) are related as
Xy(n) = ax; (1) +bx, (n)

where a, b = constants

Then the output y;(rn) is defined by
»(my=n'x(n-1)
¥y(n) =n [ax,(n=1)+bx,(n-1)]
y,(n) = an’x,(n=1)+bn’x,(n-1)
yi(n)=ay,(n)+by,(n)

Therefore, the system is linear.

Problem 2,50 Determine whether the given system is linear or not.

y(n)=x*(n) -
Solution Let us define the signal x, (1) whose response is given by
»(n)=x; ()
Similarly, let us define another signal x, (n) whose response is given by
ya(n)=x3(n)
These two signals are related as
xy(n) = ax,(n}+bx,(n)
where a, b = constants '
Then the output y,(n) becomes
y3(n)=x; (n) |
y3(n) =[x () + by ()|
yy(m)= @’ xf (n)+b°x3 (n) + 2x, () X, ()
y3(n) # ay,(n)+ by, (n)
Therefore, the system is nonlinear.

Problem 2.51 Determine whether the following continuous-time systems are linear or not.

M M) =xinD @) ) =sin[x()]
(i) y(r)y=r*xz-1) (iv) W) ="
~ Solution
i Hn)=x(sin1)
Let us define x (1) and x(r) as

x ()= y (1) = x [sin{1)]
X (1) =y, (1) = x;[sin(y)]
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Let us define x,(r) such that
xy(1) = ax (1) + bx, (1)
then the output becomes,
y3(1)=x; [sin(1)]
3 (1) = ax; [sin (1) ]+ bx, [sin (1)]
yi(0)=ay () + by, (1)
. Therefore, the system is linear.
) yo=sin(x(0] |
Let us define x (¢) and x.(¢) as.

x (1) = yy (1) =sin[x; (1)]
: (1) = y,(0) =sin[x,(1)]

Let us define x, (r) such that |
() =aq(t) +bx;(1)
then the output becomes,

y3(t)=sin [x;(1)] =sin [ax,(t)+bx,(1)]

Hint sin{A4+ 8)=sin Acos B+cos Asin B

y3(0) = sin[ax, ()]cos [bx, ()} + cos [ax, (0 ]sin [6x, (0]
ya(t) = ay, (1) +byy ()
Therefore, the system is nonlinear.
(i) pr) =1 x(t-1)
Let us define x,(f)and x,(r) as
xO=3p0= =)
| % (0) = y3(0) = Pxy(r=1)
Let us define x;(r)such that !
x(0) = ax, (0+ bx, (1) |
then the output becomes, ‘
¥ ()= x5 (e =1)
y; () = Plax, (t=1)+ bx, (£ =1)]
y3(0) = ar*x (t = 1)+ b2 x, (1 -1)
Wft) = ay, (1) + by, (1)
Therefore, the system is linear.
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(iv) y()=e""
Let us define x,(r) and x,(¢) as
| xi(0) =y () =e
. X3 (1) =y, (1) =™
Let us define x;(¢) such that
X, (1) = ax, (1) + bx, (1)
then the output becomes,

r]“l

»if=e

(0= 0]

ni)=e
(1) # ay (1) + by, (1)

I h
ax (0) fity (1)

Therefore, the system is nonlinear. i
Problem 2.52 Determine whether the following discrete-time systems are linear or not.

(i) yn)=In[x(n)] (i} W(n)=x(n)=-x(n-1)
(i) p(m)=x*(m)+x>(n=1) (iv) Wn)=2x(n)+4

Solution
() ¥ =In[x(n)]
Let us define x;(n) and x,(n) as
()= y(ni=h [::1 {n}]
xy(n)=> yy(n)=In[x,(n)]
Let us define x3(n) such that
x3(n) = ax; (n)+ bx; (n)

then the output becomes,
y3(n) = In[xy(n)]
y3(n) = Infax, (n) + bxy ()]
yi(n) # ayy (n)+ by, (n)
Therefore, the system is nonlinear.
(i) (n)=x(n)-x(n-1}
Let us define x,(n) and x,(n) as
x(m) = y(m)=x(n)-x(n-1)
x5 ()= yy(n) = xy(n)—x5(n-1)
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Let us define x;(») such that
Xy(n) = ax (m)+ bey (1)
then the output response becomes,
yi(n)=xy(n)—x;(n-1) ' .
ya(n) = [ax (n) + bxy ()] =[x, (n = 1) + by (n - D]
Ya(n)=alx(n)=x(n=1)]+b[xy () - %y (n 1))
Y3(n) = ay,(n)+ by, (n)
Therefore, the system is linear.
(i) yn)=x*(m)+x*(n-1)
Let us define x;(n)and x,(n)as
x, ()= y(n) =x(n)- x3 (n=1)
X(n) = y(n)= xzz{n] —J::f. (n—1)
Let us define xy(n) such that
x3(#) = ax; (n)+ bx, (1)
then the output becomes,
yi{n)=x3 {n}+x§[n =1)
¥3(n) = [axy(m)+ by ()] +[axy (1= 1)+ by (1-1)]
yi(m) =[a’xj’ (n)+ b x3 (n)+ 2abx, () x, (n)]
+[a’x; (n=1)+ b’ x3 (0= 1)+ 2ab x, (n— 1) x, (n~1)]
»ny=a* [+ x}(n- 0]+ 6% [+ n-1]
+2ab[x (m) x5 (n) + x, (n=1) 23 (n =1)]
¥3(n) # ayy(n) + by, (n)
Therefore, the system is nonlinear,
(iv) 3{(n)=2x(n) + 4
Let us define x; (n) and x, () as
x{ny= yn)=2x,(n)+4
Xy (n) = yy(n) =2x,(n) + 4

Let us define xy(n) such that
x3(n) = ax,(n) + bx,(n)

then the output response becomes,
¥i(n)=2x(n+4 f
y3(n) = 2[ ax, (n)+ bx, ()] + 4
¥i(n)=2ax;(n)+ 2bx, (n)+ 4
Yy(n)# ayy (n)+ by, (n)
Therefore, the system is nonlinear.
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Problem 2.53 Determine whether the following continuous-time systems are linear or not.

2
)] :‘;?} ‘Mr]+y{£} ‘M)ﬂr{r}

2
{"lf.'l_ d;;:ﬂ d"’mﬂr{:] r'ﬁ“+x{r}

Solution
2
M ‘f””n‘w}a-ym ﬂﬂm

a2
Let us deﬁ_ne x(r)and x;(r)as

2
d. ;‘1(” +2 “5’;” +y(0) = —‘f'f} +x,(1)

d* dx
xl{:}=-f}-+2%ﬂ+yzm= ;f”u](r}

x)=

Let us define x5(r) such that
x; (1) = ax (1) + bx;y (1)

then the output response becomes,
dlyi{:]+2¢'l{‘} J{I}- ]-{ }+x;{.‘.}

dr? dt

]
d j’,{” @;{ﬂﬂlm-“{aq (1)+ b (0)]+ [ax, (1) + bx, (0]
'y @) @O, ) ,{}

e +2 0 +yi)=a ” +b +m,[l']+b.:' {r)
d'yy(0) D0 AU dn () ,

2041204y, =a 20 .{r}]+b[ +50)]

ﬂmﬁ:um the system is linear.

2
@ 2 JL"m‘qn-r"':""[";'1|-,;.|-[:j|=.r-5ﬁ"-;'v+x{r;|

dr? dt dt
Let us define x (1) and x (1) as
'y @) @ .10
x ()= pm i + 3=t " +x,(t)
d©, &0, o )
2= e p + y,(1) I‘—;'-'—+I-_-{l]
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Let us define x (1) such that
xy(t)=ax{ty+bx,(t)
then the output response becomes,
3@ (o)
i’ dt

dx (1)
f

+ i) =t +25(1)

= I%[ﬂl" 1)+ .’JII{I]]+[;11‘| (1) + by (1)]

dvy (r de, (1
=m[-fj|+b:[ ;: }}+m;[f}+b.r1(t]

d*ys() |, dys(0) dsy (1) dx (1)
e " — b £
e w1 " + (N =alt 5 +x, (N |+b| 1 = +3,(1)
Therefore, the system is linear.

2.6.7 Causal and Noncausal System

—

Causal system In a causal system, the output response of the system at any time depends only on the
present input and/or on the past input, but pot on the future inputs.

In acausal system, the next input cannot be predicted. Hence, this may not be an essential condition for
all systems.

- Examples for causal system are
y(n)=x(n)=x(n-1)
W) = ax(r)
In the noncausal system, the output response of the system depends on the future input values also.
Examples for noncausal system are

y(n)=n"x(n)
¥y =x(n+)—x{n)

SOLVED PROBLEMS _

Problem 2.54 Check whether the following systems are causal or not.

W y)=ar) (i) yir)=x(r") (i) (1) =x(t)
41

(ivy 2} =x(sini) v} 0= Jx[f}dr (vi) _v{r;-=—d31”
Solution -

(i} w)y=1x(r)
Let 1= 0, then »(0)=0
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t=1,then ¥(1)=x(1)
=<1, then y(=1)==x(=1)
For all values of 1, the output depends on present and past values of the input.
Hence, the system is causal.
i) y()=x(*)
Let 1=0,then ¥0)=x{(0)
=1, then y(+1)=x(1)
r=—1, then y(-1)=x(1)
t=2,then W2)=x(4)

[n the last two cases, the output value depends on the future value of the input. Hence, the system is
noncausal.

(i) WO=x*(1) .
Let £=0, then 3{0) = x3(0)

t==1,then y(-1)= x*(-1)
=1, then p{1}= x}1)
The output value does not depend on the future value of the input. Hence, the system is causal.
(iv) »{r)=x(sin¢)
Let r=0, then ()= x{sin (0)]
t=~1, then y{~1) =x [sin (~1)]
=1, then (1) =x [sin (1)]
The output value does not depend on the future value of the input. Hence, the system is causal.

4

v) ¥ = ]‘ x(t)dt

T=—

Let =0, then
#0)= [ x(r)dt=x(1)_ = x(0) - x(~w0)
=1, then -
y) = | x(D)de=x(0), =x(4)-x(-=)
[=~|, then

— L
W=D = | x(®)dr=x(1) = x(-4)-x(~=)
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In the second case, the output value dtpcndsﬁﬂnﬁmlmmluu of the input. Hence, the system is
noncausal.

o) ¥ =20

ax(0)
dt
dx(1)

t=1,then y(1) ==

_ e &CED
t=-1, then ¥(-1) %

The output value does not depend on the future values of the input. Hence, the system is causall
Problem 2.55 Check whether the following systems are causal or not.

Let =0, then y(0)=

N-|

@ M) =x(m-x(n-1) () wm= x(n*?) @) ym= Y x(n)

wal)

M=)
() y(m)= 3, x(n) (v) Hn)=x(n)x(n-1)
Solution T
® Hn) =x(n)-x(n-1)
Let n=0, then W{0) = x(0)~x(-1)
n= 1, theny(1)=x(1)-x(0)
n=-1, theny{—1)=x(-1)-x(-2)
The output value depends on the present and past values of the input but not on the future value.
Hence, the system is causal,

(i) ym)=x(n"?)
Let n=0, then {0) = x(0)

n=1,theny(1}=x(1)
_ n=-1,then y(-1) = x[(-N"*)

n=4,then y4) = x(2)

The output value depends on present or past values of the input, but not on the future value. Hence,
the system is causal.

i) yn)=S3 x(k)

Hn) = quf}= *(0)+x(1)+x(2)+....+x(n—1)
The output depends on thepmcnt and past vnlues Hence, the system is causal,
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@ Y= xk)

=Y x(k)=.... x(~2)+ x(=1)+x(0)+ x(1) + x(2) +...x(n~1)

-

The output depends on the future values of the input. Hence, the system is noncausal.
(v) Hm)=x(m)x(n-1)
Let n=0,then p{(0) = x(0)x(-1)
n=1,theny(1)= x(1)x{0)
n==1,then ){=1) = x(=1) x(=2)
The output depends on the past and present values of the input. Hence, the system is causal,

B 2.7 INTERCONNECTION OF SYSTEMS

Interconnection of systems is considered to be one of the most important aspects in system design. In general,
the actual system is always divided into many subsystems which are intercopinected such that the actual work
will be executed smoothly. Computing a larger systems involves longer time uration and increased complexity
to analyse the system. When the system is divided into smaller modules, the complexity involved in the smaller
module is lesser than considering the entire system at time. Due to the advancement of parallel computation
concept, the module based system analysis work faster than considering entire system.

Following are the genmll configurations, in which any subsystem can be connected.

- NN T RS T W EE W W SR e e om me ww ome cmw omb

(c)

Fig. 2.55 Interconnection of Systems (a) Series (Cascade) Connection
(b) Parallel Connection (c) Series-Parallel Connection
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Fig. 2.55(a) illustrate the subsystems connected in series. Fig. 2.55(b) illustrate the subsystems connected in
parallel, A serial-parallel combination of subsystems is shown in Fig. 2.55(c).

Let us consider a general communication receiver system, as shown in Fig. 2.56.

:El.l:nyﬂm1 Subsystem S |
i 1
! Local :
" oscillator i
' Subsystern 2 _;

Fig. 2.56 Receiver of a Communication System

The receiver system consists of many suhs?stﬂns like receiver (subsystem 1), local oscillator (subsystem 2)
mixer (subsystem 3), filter (subsystem 4), and amplifier (subsystem 5). All these subsystems are connected
either in parallel or in series, in order to execute the assigned process. If the systems are not connected in proper

configuration (series or parallel), then the output may not be the expected one, though each and evursubz:.rmm
is individually working.

CHAPTER SUMMARY

e A signal is defined as a function of one or more variables, which conveys information.

e A system is an entity that manipulates one or more input signals to perform a function, which results ina
new output signal.

* The signals can be classified as
= Continuous-time (CT) signal and Discrete-time {DT) signal
= Periodic and Aperiodic signals
« Even and Odd signals
» Deterministic and Random signals
= Energy and Power signals
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¢  Differentiate discrete-time signal and digital signal

15S-83

Discrete-time Signal

Digital Signal

A DT signal is obtained by sampling a CT
signal at a uniform or non-uniform rate.

A signal x(n) is said to be DT signal if it

defines or represents an input at discrete
instants of time.

The DT signal is discrete in time only,

For a DT signal, the amplitude varies at
every discrete values of ‘»’.

A digital signal is obtained by sampling,
quantizing and encoding a CT signal.

A signal is said to be a digital signal if it is
represented in terms of binary bits (0’
or ‘1.

The digital signal is discrete in time and
quantized in amplitude.

For a digital signal, the amplitude is represented
as a high voltage if the bit is 1" and low voliage
if the bitis *0°.

¢ Differentiate energy and power signal.

Energy Signal

Power Signal

The energy of CT signal x(f) over a period
T

r . .
-—SfS+— i5givenb
5 5 £ ¥

+172 .
E= Lt | sl dr

—+m 13

The energy of DT signal x(n) over a period
~NZn=+N isgiven by

+N .

_ 2
£= Lt 2, <)

==y

condition 0= E_, < oo,

are considered to be energy signals.

A signal is referred to as energy signal if and
only if the total energy of the signal satisfies the

Generally deterministic and aperiodic signals

The power of CT signal x(r) over a period
T T . .
-—SIS+— isgivenb
7 5 L Y
+1/2
P= Lt [ |xof de
I'—rea -1i2
The power of DT signal x(n)over a period
-N <n<+N 15 given by

L s I|.r

. I 2
E= v ; ()

A signal is referred to as energy signal if and

condition 0= £, S oo,

Generally random and periodic signals are
considered to be power signais.

only if the total energy of the signal satisfies the
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+ Differentiate even and odd signals.

Odd Signal Even Signal
A signal is said to be odd if A signal is said to be even if
x(f}==x(-t) for CT signal x(#) = x(=t) for CT signal
x(n) = ~x(-n) for DT signal x{n) = x(—n) for DT signal
The odd component of any signal is The even component of any signal is
X = ﬁ:;[—-” for CT signal x ()= w for CT signal
Xo(m) =FI{"};I{_"} for DT signal x,(n) = I["}'I';{_ﬂ] for DT signal
Odd signals are anti-symmetric about the | Even signals are symmetric about the vertical
vertical axis axis
Example: Sine wave Example: Cosine wave

e Differentiate random and deterministic signal.

Deterministic Signal Random Signal .
A deterministic signal is one in which there is | A random signal is one in which there is a
a certainty with respect to its values at any | uncertainty with respect to its values at any

time. time.
Future value of signals is predictable. Future value of signals is unpredictable.
Eg. Pulse train, sinusoidal wave elc. Eg. EEG signal, Noise, Speech etc.

Deterministic signals can be expressed | Random signals are expressed
mathematically. mathematically in terms of impulses. -

* The fundamental period of Ngof a DT signal x(n)is the smallest positive value of N for which

x{n) = x(n+ N) or the DT signal exhibits periodicity. It is defined as N, = —zf-m where m is an integer
value. ' %
&  The fundamental period T;; ofa CT signal x{r) is the smallest positive value of T for which x(#) = x(f + T) the

CT signal exhibits periodicity. It is defined as T, = E

* Basic operations performed on dependent variables of signal
= Amplitude scaling
» Addition of signals
»  Multiplication of signals
» Differentiation of signals
= Integration of signals
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Basic operations performed on independent variables of signal

s Time scaling

» Reflection of signal

e Time shifting

Amplitude scaling is considered as the multiplication of scalar value o with continuous-time signal x(r)
[x{n) for discrete-time signal], that is, a x(r), [ x(n) for discrete-time signal]. If the value of a > 1, then
signal is said to be amplified. [f the value of a < |, then signal is said to be attenuated. During amplitude
scaling the time scale remains the same.

When any two signals are added, their amplitude will be changed but the time scale remains unaltered.
When any two signals are multiplied, their amplitude will be changed but the time scale remains unaltered.
When any signal is differentiated, their amplitude will be changed but the time scale remains unaltered.
When any signal is integrated, their amplitude will be changed but the time scale remains unaltered.
Time scaling is considered as the multiplication of scalar value ce with the time function of continuous-time
signal x(r) [x{n) for discrete-time signal), that is, x(aur) [x(cn) for discrete-time signal]. Ifthe value of a > 1, then
signal is said to be compressed. Ifthe valuve of o < 1, then signal is said to be expanded. During time scaling
the amplitude remains the same.

A continuous-time signal x(f) [x(n) for discrete-time signal] is said to be shifted right side, if it satisfies the
condition x{¢~¢,) [x(n—n,) for discrete-time signal] and shifted left side, if it satisfies the condition x(r+1,)
[x{n+n) for discrete-time signal]. A continuous-time signal x(—) [x(—n) for discrete-time signal] is said to
be shifted right side, if it satisfies the condition x{(r+¢) [x(n+n ) for discrete-time signal] and shified lefi
side, if it satisfies the condition x(t-1 ) [x(n—n,) for discrete-time signal].

A real continuous-time exponential signal in its more general form represented as x(r) = Be™ where 8 is the
real scaling factor and o is the real parameter. For a < 0 the magnitude of the continuous-time exponential
signal decays exponentially. For a >1 the magnitude of the continuous-time exponential signal rises
exponentially.

A real discrete-time exponential signal in its more general form represented as x{n) = Ba™ where B is the real
scaling factor and « is the real parameter. For o > the magnitude of the discrete-time exponential signal
rises exponentially. For 1 > o > 0 the magnitude of the discrete-time exponential signal decays exponentially.

I 120

The continuous-time step function is denoted by u(t) = {“ <0

I, n20

The continuous-time step function is denoted by u(n) = {u <0
. N

1, n=0

The impuise function is denoted by §(n) = {
0, n#0

, 120

The continuous-time ramp function is denoted by r(f) = {I] o

n, nz0

The discrete-time ramp function is denoted by r(n) =
0, n<O
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R I I R

=

The system can be classified as

s Continuous-time and Discrete-time systems

= Stable and Unstable systems

s Memory and Memoryless systems

» [Invertible and Non-invertible systems

s Time-invariant and Time-variant systems

s Linear and Non-linear systems

s Causal and Non-causal systems

If the input and output of the system are continuous-time signals, then the system is called “continuous-
time system™. '
If the input and output of the system are discrete-time signals, then the system is called “discrete-time
system”.

A system is said to be stable if and only if every bounded input produces a bounded output.

A system is said to possess memory if the output of the system depends on past and future values,

A system is said to be an invertible system if the input signal given to the system can be recovered from the
output signal of the system.

A system is said to be time-invariant if the input signal is delayed or advanced by any factor that leads to
same delay or advancement respectively in the output time scale by the same factor, that is, the system
responds to an input at any instant of time and results in an output.

A system is said to be linear if it satisfies superposition, scaling and additive property, that is, the response
to x, (¢}+ x,(f)is y, (1) + v, (r) (additive property) and the response to ax (1) + bx (1) is ay (0) + by (1)
(scaling property), where a and b are complex constants. The same definition holds good for discrete-time
system also.

A system is said to be causal if the output response of the system at any time depends only on the present
input and/or on the past input, but not on the future inputs.

REVIEW QUESTIONS e

Define signal.

Explain one-dimensional signal with suitable examples.

Explain two-dimensional signal with suitable examples.

Explain multi-dimensional signal,

Distinguish between continuous-time signal and discrete-time signal.

What is the basic difference between discrete-time signal and digital signal?
How do you classify signals?

Differentiate energy signal and power signal.

Differentiate even signal and odd signal.

Explain periodic signal.
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11. Differentiate deterministic signal and random signal,

12. Test whether the following signals are periodit or not. If yes, what is its fundamental period?

[ pdminsl)id
{a) x(n)= sin® [; }; u(n) (b) x(n)= bEl 5 ]
() x()=e!F (d) x(f)= Iistn[%H %]]-

(&) xlm)= ms[i}- +5in [E}.,
3 3

13. Find the odd and even components of the following signals.

(@ x(n)={2,4,6,8, 10} (b) x(t)=e /lr+#
() x(t)=sin2l+cos2e d) x(n)=e'20"

14. Draw the odd and even components of the given signal.

x1(0) %
4 Bp======- -
3 4""'“'"""1’:
2 "\ | T EEEE _——f
| 2F -
671 2 34 56 ”“1““]' .
(8) 01 2 3 4 5 6
(b)
(1)
4
3
2
1
b1 2354 56 -1
{c)
15. Test whether the following signals are energy signals or power signals.
(@ x{t)=sin2ru(r) (b) x{r)=1*u(r)
,[5,,_5]'
(€) x(r)=sin3 (d) x(n)=e'* u(n)
, -,{E.J]
(¢) x(n)=uln)-u(n-6) N xt=e ** )

(g) x(n)=cosdn u(n) {h) x{n}=[%].u{n}
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16. Perform addition and multiplication on the following signals.

X(1)
'3
2
1
R R R -1 "t
(=)
y{t)
'3
3t
z—/
—A, 5 E
i Iu{éa”-a-'t 2 3 "
(b)
x;{n)
3
2
L L L
Ta-3-2-1 l 1 2 3 4 5 —4-3- 2 3 4 5
(e)
I7. Find y{r) for the given signal.
x(l)
1
0t -t
@ )= x(50+6) (b) »0)=x(5¢-6)

5.r+ti]

51~6 '
(c) .v{r}=x[ ™ ] (d) J'{-l‘]=-t[ 10

-
-
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18. Find y(r) for the given signal.

o
[+

7] SRR -

4
(@) y)=x(3+4) (b) 1) =x(3-4)
(c) y{l}-x[k;‘) (d) y{r}::[m‘;‘]
19. Define the following signal mathematically and represent graphically.
(a) Impulse signal (b) Ramp signal
(c) Step signal (d) Sinusoidal signal

(e) Exponential signal with various time periods

20. Sketch the continuous-time signal x(1) = 10cos(2m) ﬁ:rﬂ!rumal Iblbﬂnﬂﬂtﬂﬂﬂumm
discrete-time signal with a sampling period 7=0.1 5.

21. Sketch the continuous-time signal x(1) = e * for the interval 2 > r > -2 and sketch the corresponding

discrete-time signal with a sampling period T=0.2 5.

Define a system with suitable examples.

Give a broad classification of systems,

Define stability of a system.

Test whether the following systems are stable or not.

(@) h(n)=b"u(-n) (b)) Am=4""u(n-2)
() A =1e""ulr) (d) M)y=tsineult)

(€ M=e"Yu() N hm=e"uin-6)

Define a memory system with suitable examples.
Test whether the following are memory systems or not,

2
(@ He)=x()+x(t+1) ®) )= d Jr[l-']

(€) »)=x(n-1}+x(1-n) d) »n= ﬂ*[i‘}
) »O=x'(1) H  y(n)=e"u(n)

LRER

53R
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28. Define a time-invariant system with suitable examples.
29. Test whether the following systems are time-invariant or not.

(8) y(r)=cos[x(¢)] (by y(n)=nx(n)
(©) y(m)=x(n)coswn d) y(m=e""
© =re-nr2y-2) O ZD420=x0
(g) ;]Hfﬂt} x(1) () y(n)=log,|x(n]

30. Define a linear system with suitable examples.
31. Test whether the following systems are stable or not.

@ y(n)=n’x(n)
(b) yin)=nx(n-2)+k

© y)=e"" +k

&’ y) | 4 B0 dx(r)
d
(d) 2 o H ) =— =4 3a(1)
(e) dd:;m + 4f n&;;l} +2y(1) = { ]-l-:l.:r[r}

32. Define causatity with suitable exnmplcs
33. Test whether the following systems are causal or not.

@ yiny=m(n) ®) ¥(n)=x(cos2n)
© y(m=x*(n) (d) mn= x”-l-x{!}
© AN =x(0x(~2) ® .vn:r}=fn:r}

34. Explain the various configurations in which sy;ttnu are connected, justify their advantages and mention
their applications.

35. Show whether the system y(n) = nx(n) is a linear time-invariant system,



CHAPTER

3

LTI Systems

Linearity and time-invariant properties are considered to be important in analyzjng and realizing a system. In
this chapter, the relation between input and output that satisfies the linearity and time-invariant properties of
the system are discussed. In this chapter, term “convolution sum” is introduced, which gives the mathematical
relationship for the input-output, The input-output relation is explicitly discussed both in discrete-time and

continuous-time,

® 3.1 DISCRETE-TIME LINEAR TIME-INVARIANT SYSTEM

The impulse response is the output of the Linear Time-invariant (LT1) discrete system when the impulse 8(n) is
applied to it.
1, n=0

3.1
0, elsewhere @)

E[n}={

The impulse response completely characterizes the behaviour of any LTI system. The discrete-time unit
impulse can be used to construct any discrete-time signal.
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3.1.1 Representation of Discrete-time Signals in Terms of Impulses

Let us consider the product of a signal x(n) and the impulse sequence &(n), written as

| x(m)&(n) = x(n) 6(0) (32)
From equation (3.1), it is clear that the impulse sequence exists only at n = 0. Therefore, x(n)d(n) can be
rewritten as x(n)&(0). Though the impulse sequence exists at n = 0, the input signal x{») exists in the remaining
samples.
Similarly,
x(=2)8(n+2)
x(=1)d(n+1)
x(0)5(n)
x(d(n-1)
x(2)é(n-2)
Therefore, the generalized relationship between ll'ﬂ: input signal x(n) and the shifted impulse sequence is
given by
x(n)&(n—k) = x(k)&(n-k) (33)
In equation (3.3), x(n) represents the input signal but x{k) represents the magnitude of the input signal x{n)
at time 4. In equation (3.3), the product of input signal x{n) and time-shifted impulse 8(n—£&) results in the
time-shifted impulse 8{(n— k) whose magnitude is the value of the signal x{r) at time &, that is, x(k) represents
the magnitude of the signal at k and &(n— k) represents the position of impulse signal.
Let us analyze the above statement graphically by considering a random signal as shown in Fig. 3.1.

Itis clear from Fig. 3.1, that the signal x(n) can be decomposed into the product of time-shifted impulse and
signal x(n) at k, i.e.

x(n) =...+ x{(=4)6(n+4)+ x(=3)d(n+3)+ x(=2) 6 (n+2) +x{-l}ﬁ{n + 1)+ x(0)8(n)
+x{1)8(n=D+x(2)8(n=-2)+...

x(n) = E x(k)(n— k) (34)

Any signal can be rcprcscnhn:i as a time-shifted impulse sequence &(n—k).
If the input signal x{(n) = w(n), i.c.

: {L nz0

uln) =

0, elsewhere
tlunmyuniutepsiplimbempmmuiu
u(n)= Y 8(n-k) | (3.5)

k=0
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Fig. 3.1 Signal Decompoasition

3.1.2 Convolution Sum

Let us consider a system, say H[+], to which the input signal x{n) given in equation (3.4) is applied. The output
signal becomes :

y(m)=H[x(m) (3:6)
y(n) = HLi x{t}ﬁ{n-ﬂ]

x(n) ————{ Hls]}——>yin)

Fig. 3.2 System Represeniation
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By linearity definition the term convolution describes, how the input signal interact with the system to
produce the output signal. It is particularly useful to consider the output from the system owing to an impulse
input. This is because any input signal may be represented as a sequence of impulses of different strengths,
The operator H[«] operates only on function but not on magnitude of the signal x(k). Therefore,

yin)= ¥ x(k)H[8(n- k)]

e

yimy= Y, x(k)h(n) (3.7)
Ew—sa
where A (n) = H[8(n=k)]
If the system is an LTI (Linear Time-invariant) system, then the time-shifted input results in a time-shifted
output, i.e.
b (n)=h,(n-k) (3.8)

The output due to the time-shifted impulse is a time-shifted version of the output due to an impulse.
Let hin} =k (n), then

| him)=h(n-k) (3.9
Therefore, equation {3.7) can be written as,
yin)= i x(k)h(n—k) (3.10)
The equation (3.10) is called the ';ﬂﬂﬂ'-’ﬂhllil:!: ;:m‘ and is denoted by the symbol «, i.e.
yin) = *ii x(k)h(n=k) = x(n)*hin) (3.11)

SOLVED PROBLEMS __ _ _ __ __ __ _

Problem 3.1 Express the given signal sequence .as a time-shifted impulse.

x(m)={1,-2,8,4,5,-3.7}
T.

Solution In general, the arrow * T * shows the value of the data for 1 = 0.

' n | 3| -2 | ~<1]0 | 2 3
x|t 2 8l al s 3l 7
From equation (3.4), it is clear that any signal can be represented as lincar combination of magnitude and
position/type.

x(m=Y x(k)8(n-k)

k==m

+3
x(n)="Y x(k)8(n—-k)

k=3
(7)) =x(=318{n+ 3+ x(-2){n+2)+ x(-1)d(n+1)
+x(0)&(m) + x(1)8(n— 1)+ x(2)&(n -2} + x(3)B8(n-13)
(M =8(n+3)-28(n+2)+B8{(n+D)+48(M)+58(n=1)=-38(n=2)+78(n-3)
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Problem 3.2 Express the given signal sequence as time-shifted impulse.
x(n) =1{2,3,0,7,8,-15,18,20}
T

_ Solution

n -2 | -1 0 1 2 3 4 3
x(m | 2 3 0 7 8 | -15] 18 | 20
From equation (3.4), it is clear that any signal can be represented as linear combination of magnitude and

position/type.
x(n)= D x(k)d(n-k)

k==
5

x(n)= Y x(k)d(n-k)
k=-2
x(n)=x(=2)8(n+2)+ x(-1)(n+ 1)+ x(0)d(n)+ x(1) S{n-1)

+x(2)d(n = 2) + x(3)6(n - 3) + x(4) 5(n - 4) + x(5) 5(n - 5)
x(n)=28(n+2)+38(n+1)+78(-1)+85(n—2)-155(n-3)+185(n—4)+205(n-5)

—rrrr = RmE RS Eoam Caatom R R R e e e 1] N e -

H 3.2 PROPERTIES OF LTI SYSTEM
3.2.1 Distributive Property

Let us consider two LTI systems with impulse responses h (n) and h,(n} connected parallelly as shown in Fig. 3.3,
y1{n)
i = hll_l"l}.
Syslem-1 1
x(n) ——» C:'J—'- y(n) = x{n}———= h{n}= hy{n) + hz(n) f—— yin|

- |
bz}
Sysiem-2 yain) )
(a) | (b)

Fig. 3.3 (a) Systems Connected in Parallel (b) Equivalent Representation

By definition of the distributive property,
x(n) s [Hy (n)+ by (n)] = x(n) % by (n) + x(n) = iy (n)

Proof The output of the first system is .
yi(n) = x(n)» Iy(n)
Similarly, the output of the second system is

¥a(n) = x(n)+ hy(n)

(3.12)
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The overall output of the system y{n) is given by
W)= )+ yy(n)

y(n) = x(n) s Iy(n)+ x(n)» Iy (n)
By the definition of convolution from equation (3.11)

y(im= 3 x(k)(n-k)+ 3, x(k)m(n—k)

.i:.-lll l---

yoy= s0)h(n—B)+hn—-K= S x(kYh(n—k)

where Hn k) = Iy (m )+ by (= k) = ) = () ()

Therefore, y(n)= Y x(k)h(n-k)=x(n)shin)

tm—dﬂl

If two systems A, (n) and h.(n) are connected in parallel, then the impulse response of the system to the
input signal x(n) is equal to sum of the two impulse responses.

3.2.2 Associative Property
Let us consider two LT1 systems with impulse responses h (n) and h,(n) connected in series as shown in Fig. 3.4.
X0 o 0 O oy YO R ) - ht—— yin)

(8) (b)
Fig. 3.4 (a) Systems Connected in Series (b) Equivalent Circuit

By definition of the associative property,

[x(n) s Iy (m)] & Iy () = x(n) [y (n} = By (n1)] (3.13)
Proof The output of the first system
» ()= x(n)sh(n) (3.14)
Similarly, the output of the second system
y(n) = 3y (n)s by () - G15)

Substitute equation (3.14) in equation (3.15),
() =[x(n)s by (m)]s by (n) = x(n) s [y (n)» By (n))]

3.2.3 Commutative Property

Let us consider two LTI systems with impulse responses A (n) and h,(n) connected in series as shown in Fig. 3.5.

x(n) —=| hy(n) hy(n) |——=yin) = x{n)——s hz(n) hy(n) f——= y(n)

Fig. 3.5 Systems Connected in Series
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By definition of the commutative property,
m{n)=hy(n)= hy(n)sh(n) - (3.16)

hinyshy(m)= 3 h(k)hy(n—k)

k==

Proof

letn—-k=m=k=n—m

B(nyshy(m= > h(n—mhy(m)

Alm —af

h(nyehy(ny= 3 hy(mby(n—m)

iy = =i

Iy () Iy (n) = hy () » By ()
Equation (3.16) finds application in solving convolution problems. This property can also be extended to
signals, i.e.

yin)=x(m=hin) = h{n}u{n] (3.17)

B 3.3 PROPERTIES OF DISCRETE-TIME LTI SYSTEM .
3.3.1 LTI System With and Without Memory

A system is memoryless if the output at any time depends only on the present input (discussed in Chapter 2).

This is true for the LT1 system if and only if
Hnm) =0, n#0

Let us consider the impulse response of the form

h(n) = k &(n}
where k = A{0), is a constant
The output of such a system is given by

yiny= 3 x(k)h(n—k) Hint  §(m)=1, n=0
= S(n—-k)=1. n=k
yny= Y, x(kykd(n—k)
o
y(n) =k x(k) (3.18)

Equation (3.18) is a memoryless LTI system.
If k{n) = 0, n # 0, then the LTI system is called a memory system.

3.3.2 Invertibility of LTI System

A system is invertible only if an inverse system exists. Similarly, an LTI system is invertible only ifan inverse LTI
system exists.
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Let us consider the following figure.

y(n}

x%(n) ———= hin)

hy(n) p———s win) = x(n)

L

System 1 System 2
Fig. 3.6 Invertibility of LTI System

The system response A{n) results in an output y{n) and the output of system | is given to system 2, whose
response f (1) results in an output w{n), which is equal to the original input x(n). This is possible if
hin) s by(n)=6(n) (3.19)
3.3.3 Stability for LTI System

A_system is said to be stable if every bounded input produces a bounded output. The statement can be
extended to LT1 systems also.

Let us consider a bounded input x{n), i.e.

|x(m< My <cofor all n (3.20)

Suppose the bounded input is applied to an LTI system with unit impulse response A(n), then using
convolution sum, we obtain an expression for the output y(n), i.e.

i x[ﬂ]h{n—k}ll (321)

l:—:u
By the inequality relation, the magnitude of the sum of a set of numbers is no longer larger than the sum of
the magnitudes of the numbers, i.e.

|(n)|=

[yim] s Y, [xth||hin—k)|

koo

O ESN UGS 622)
km—ss
From equation (3.20), fx(m)| < My <e=
Therefore, |x(n—k)| < My <o forall nand k.
Substitute the equivalent relation of equation (3.20) in (3.22)
lvm) s My T |A(k)| forallk e
e
The impulse response A(k) is absolutely summable if
> k)| <o (3.24)
k=—w=

then the output of the LT1 system y{(n) is stable (bounded output). 1f the impulse response (&) is not absolutely
summable, then the system is a *nonstable system’.

SOLVED PROBLEMS _ _ _ __ __ __ __

Problem 3.3 Find whether the system with impulse response h(n) = 2e 2 is stable or not.
Solution The condition for stability i'ti

E Lh(n)| < e
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E ) = E 267" —z[ y =-=f-=+ge-zm]

E lh{n}] =7 E:_h + Eﬂ_h]

P

n§nlh{n}|=2kl—¢_2 * |—.:_2] Hiﬂtg <]
- 3 -

== I-e n=i} .ﬂ

Therefore, the system is stable.
Problem 3.4  Find whether the system with impulse response h(n) = e* u(n) is stable or not.
Solution The condition for stability is

a,

i Y ()] <o

A S

Z|h{n1 EEI"-|+E +et+ef+,

H=—==n

Therefore, the system is unstable,

3.3.4 Causal System

By definition, for a discrete-time causal LTI system, the impulse response A(n) must be zero for n < 0. The
causality can be extended to convolution sum as

ymy= Y x(kyhin—k) (325)

k=

For a causal discrete-time LTI system, f(n) = 0 for # < 0. Therefore, the output of a causal system must be
expressed as

ymy="Y x(k)hn—k) (326)
k=i

A causal system cannot generate an output before an input is given to the system.

B 34 LINEAR CONVOLUTION

The convolution equation defined in aquation (3.10) can be given as an algorithm:
1. Plot both x(k) and A(k)

2. Reflect (k) about k= 0 to obtain i(-k)
3. Shift M—k) by n (towards left for —» and towards right for +n)
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Let the initial value of n be negative

Multiply each element of x(k) with i(n-k) and add all the product terms to obtain y{r)
Shift A(n—k) by incrementing the value of n by one, and do step 5

Do step 6 until the product of x(k) and h(n-k) reduces to zero

B

SOLVED PROBLEMS _ __ __ __ __ __ _ _ _ _ _ _

Problém 3.5 Perform the convolution of the two sequences
xfn)={1,2,3,4};hfn)={1,1,1,1}

Solution
 x(k) h(k) $ h{-k)
.e!.p -ﬂ
a4 9
2]
1 14 1¢
ot RN
-k-4-3-2-1 01 2 3 4 5 k 01 2 3 4 5 Kk -K -4 =3 =-2-=110
2} {b) {c) f
n
When n=-1 Mo-k) [mo o
Multiply the elements of Fig. (a) and Fig. (d)
W=1) =x(—4) W(~4) + x(~3) h(-3) + x(~2) h(-2) ‘[ ] |’ [‘!
(=1 A1)+ (0 MO) + (1) A1)+ (2 M2)+x(3)M3) s -a-2-10 1 2 3 4 k
H=1)= 0(1) +0(1) +0(1)+0(1)+ 1(0) + 2(0)+ 3(0) +4(0) | @
W=1)=0 "
Whenn=0 hi~) —
- Multiply the elements of Fig. (a) and Fig. (e)
0)=X(=3) h=3)+ X(=2) h(=2) + x(=1) h(~1) + x(0) K(0) ] ]"
+a() 1) +:(2) M) +x(3)A3) a3 2 -1 o 1 2 3 4 Kk
MO)Y=0(1)+0(1)+0(1)+0(1) + (1) +2(0) + 3(0) + 4(0) [
Wo)=1 "
Whenn=1 ' h(1=k) | nw1
Multiply the elements of Fig. (a) and Fig. (f) 3
W) =x(-2) I(~2) + x(=1) A{(=2) + x(0) 1(0) ] T ‘
+x( A1) +x(2) h(2)+x(3)h3) k-4-8-2-10 1 2 3 4 k
M1)=0(1)+0(1)+ 1(1)+2(1)+3(0) + 4(0) - o !

HI)=1+2=3



Whenn=2
Multiply the elements of Fig. (a) and Fig. (g)

N2) =x(=1) h(=1)+x(0) A(0) +x(1) (1) +x(2) A(2) +x(3) h(3)

H2)=0(1) + 1) +2(1) = 3(1) +4(0)
W2)=1+2+3=6

Whepn=3
Multiply the elements of Fig. (a) and Fig. (h)
H3)=x(0) 1(0) +x(1) A(1)+x(2) M(2) +x(3) 1(3)
N3)= 1) +2(1)+3(1)+4(1)
WI)=1+2+3+4=10

Whenn=4 _
Multiply the elements of Fig. (a) and Fig. (i)
W4)=x(0)/(0) ~x(1) A1)+ x(2) H(2) +x(3) h(3) + x(4) A{(4)
14)=1(0)+2(1)+3(1)+4(1) +0(1)

H4)=2+3+4=9

W!un n=5
Multiply the elements of Fig. (a)and Fig. (j)

M(3) =x(0) W(0) +x(1) A(1) +x(2) W2} + x(3) K(3)

+x(4) h(4) +x(5) h(5)
W5)=1{0)+2(0) + 3(1)+4(1) +0(1)+ 01}
W5)=1+4=7
When n=6

Multiply the elements of Fig. {a)and Fig. (k)
N6) = x(0) h(0) + x(1) A(1) + x(2) A2Z) + x(3) K(3) + x(4) h(4)

+x(5) H(5) +x(6) H(6)

2(6) = 1(0)+2(0) +3(0) +4(1) +0(1) +0(1) +0(1)
we)=4

When n=7
Multiply the elements of Fig. (a) and Fig. (1)

MW7) =x(0) H(0) +x(1) (1) +x(2) h(2) +x(3) K(3) +x{4) h(4)

| +x(5) h(5)+x(6) h(6) +x(T) W(T)
HT) = 1(0)+2(0) +3(0) +4(0) + 0(1) + 0(1) +0(1) +0(1)
HD=0

The result of the convolution is

LTI Systems o

LT

1y

k-4a-3-2-10 1 2 3
@ !
1]

=y

4

h{3-k)

y(n)=x(n)*hin}=1{1,3,6,10,9,7,4}
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Note If the length of x(n) is », and the length of h(n) is n,, then the length of the convolution sum is
(n+n-1).

Problem 3.6 Perform the convolution of the given data sequences

x(n)={1,2,2,1}; himy={1,2,2,2,1)
T T
Solution
x(k) 4 hik) h{—k)

[y, ald

4 k -k-3-2-10 1 k k=3 -2-10 1 2 3 k

(a) ®) @ |1
(ri+1)
When n+1=-1, ' nin—k) 4 nsl= -1
Multiply the elements of Fig. (2) and Fig. (d) % ¢ 2¢
M=2)=x(=5) h(=5) + x(~4) {~4) + x(=3) h(=3) +x(~2) h(-2) . 1
+x(=1) h(=1) +x(0) A(0) +x(1} A(1) +x(2) h(2) + x(3) A(3) T
MW=2)=0(D+ 02+ 2+ 2+ 01+ 1) +2(0)+2(0)+1(0) -K-5-4-3-2-10 1 2 3 k
wD=0 oy
When n + 1=0 : h{-1-k}? el =0
Multiply the elements of Fig. (a) and Fig. (e) |
W=1) = x(=4) h(-4) +x(=3) h(=3) + 2(=2) A(-2) + x(-1) h(-1) ‘ I [
+x(0) (0} +x(1) 1(1) + x(2) A(2) + x(3) K(3)
W-1=0(1)+0{2) + 0{2) + 0(2Z) + 1(1) + 2(0) + 2(0) + 1{0) —k—-4-3-2-10 1 2 3 4 Kk
n=h=1 {riﬂ “
When n+1=1 ht-hl + nel = 1
Multiply the elements of Fig. (a) and Fig. ()
W0)=x(=3) h(=3)+x(-2) H(-2) +x(-1) h(-1)
+x(0) I0) + x(1) (1) + 5(2) H2) +x(3) h{3) T ]
HO=0(1)+0(2) + 0{2) + 1(2) +2(1)+2(0)+ 1(0) k-a-3-2-10 1 2 3 4 k
H0)=2+2=4 m{nIn
When n+1=2 | h{1-h'_i
Multiply the elements of Fig. (a) and Fig. (g) mi=e
W)= x(=2) A(=2) + x(=1) A(=1) + x(0) ~(0) +x(1) (1)
+x(2) h(2)+x(3) h(3) ] ] .
w1)=0(1)+0(2)+ H2)+2(2) +2(2) +2(1)+ 1(0) 2k -4 -3 3 .1 r.- 1 2 3 4 kK
wW)=2+4+2=8 ° {

n+1}



When 1 +1=3
Multiply the elements of Fig. (a) and Fig. (h)
M2y =x(=1} A(=1) + (0} MO) (1) A1)+ x(2) A(2) + x(3) I(3)
N2)=0(1)+ H2)+2(2)+2(2)+ I(1)
W2)y=2+4-+4+]=11

When n+1=4
Multiply the elements of Fig. (a) and Fig. (i)
W3)= x(0) 0) +2(1) A1) +x(2) W(2)
+x(3) H(3) +x(4) H4)
W3)=U1)+22)+2(2) + 12) +0(1)
I =1+4+4+2=11

When nt1=5
Multiply the elements of Fig. (a) and Fig. (j)
(A) = 2(0) A(0) +x(1) A1} + x(2) A(2) +x(3) A(3)
. +x(4) (4} +x(5) h(3)
M4 = 10)+2(1) +2(2)+ 1(2)+ 0(2) + (1)
yd)=2+4+2=8

When i +1 =6
Multiply the elements of Fig. (a) and Fig. (k)
H3)=x(0) k(0) +x(1) A1)+ x(2) K2} + x(3) £(3) +x(4) h(4)
+x(5) 1(5) +x(6) h(6)
W5 = 10)+ 2000+ 2( 1)+ 1(2)+ 02} + 0(2) + 1{D)
Mi)=2+2=4

Whenn+1=7
Multiply the elements of Fig. (a) and Fig. (I)
W6)=x(0) M0) +x(1) A(1)+x(2) H(2) + x(3) I(3) + x(4) h(4)
+x(5) A(5) +x(6) H(6) +x(T) K(T)
W6} = 1(0)+2(0) +2(0}+ 1(1)+ 0(2) + 0{2) + 0{2) + O{1)
y(e)=1
Whenn+1=8
Multiply the elements of Fig. (a) and Fig. (m)
W) =x(0) A(0) +x(1) A1) +x(2) M2} +x(3) M3 ) + x{4) h(4)
+x(5) h(5) +x(6) ~(6) +x(7) h(7) + x(8) h(8)
M7= U0)+2(0)+2(0)+ 1O +0(1)}+0(2) +0(2) +0(2) +0(1)

W7)=0

LTI Systems e
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slm 3
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The result of the convolution is

| yim) =x(m*h(n)={1,4,8,11,11,8,4,1}
Problem 3.7 Perform the convolution of the given data sequences
x(n) = {1,-2,3,-2}; h(m)={2,-3,4}

T T
Solution
1 2k} | 1 hlk) 4 hi-k)
4 . 4 o o 4
3 ) 3 a
2% 2% 2
1 ‘ 1+ 1
—— T E - S — = —— .
-k -1 |01 k =k -1 [0 1 k =k —1u$2 k
(n+1)
-
1 _3b _a
@ (b) (©
When n==3 (or n+1=-1) I'n{-s-u:b 1= -2
Multiply the elements of Fig. (a) and Fig. (d)
¥(=3)=x(~4) h(-4) + x(~3) h{-3) + x(-2) H-2) 3;
+x(=1) A1)+ x(0) A(0) +x(1) A(1) +x(2) h(2) 2l

H=3)=0(d)+0(=3)+0(2)+ 1(0) + (-2)(0)
+3(0) +(=2)(0)
H=3)=0

=

k-4 B -2 -1 |0

(1)

-3¢
1!
(d)




Whenn=-2(orn+l=-1)

Multiply the elements of Fig. (a) and Fig. (e)

N=2)=x(=3) -3} +x(=2)} h(-2) +x(-1) h{-1)
+x(0) h(0) +x(1) (1) +x(2) h2)

=2)=0(4) + 0(-3)+ 1(2) +(-2) (0) + 3(0) + (-2){0)

W-2)=2

Whenn=-1orntl =0

Multiply the elements of Fig. (a) and Fig. (f)

W=1)=x(=2) W(=2) + x(~1) h{-1} + x(0) h{ﬂ'}
+x(1) h(1) +x(2) h(2) .

W-1)=0(4)+1(=3)+(-2) (2)+ 3(0) +(-2)(0)

W-1)=-34=27

When n=0(orn+1=1) |
Multiply the elements of Fig. (a) and Fig. (g)
HO)=x(=1) h(=1)+x(0) A(0) +x(1) A1) +x(2) A(2)
W0)=1(4)+(=2)(-3) +3(2)+(-2) 0
W0)=4+6+6=16

h-2-k)t

LTI Systems & LTK15

41

3

2

1

Nel = =1

2k -4 -3

-2 =1 |0

(n+1}

nel=s0

k-4 -3

=2 -

nel =1
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h{1-k} nel =2
Whenn = 1(or 1 +1=2) 4
Multiply the elements of Fig. (a) and Fig. (h) 3
W) =x(=1) A=1)+3(0) W) + x(1) (1) + x(2) h(2) N
W =10+ (-2)(4) +3(3)+ (=2} (2) '
Wl)=-§-9-4=-11 1
-k ol 2 3 k
|
(n+1)
-2
=31
(h}
h{2-k ) M1=3
When n=2(or n+1=3) 4
Multiply the elements of Fig. (a) and Fig. (i} 3
W2y =x{-1 (1) +20) M0} +x{ 1) A1)+ x(2) I{2) + x(3) A(3) o)
M2)= 1) +(=2)(0) + 3(d) + (-2} (-3) + O{2)
W2)=12+-6=18 1
. > |
~k 0 3 k
—1 T
{n+1)
- -EJ
=3 &
l
(i)
h(3-k)?$ nel =4
Whenn=3(orn+1=4) 4+ ?
Multiply the elements of Fig. {a) and Fig. (j) .
H3y=x(=1) W=1) +x(0) A(0) + 3 1) A1} + (2 B(2) +x(3) 1(3) + x(4) s
)= 10)+(-2)(0)+3(0)+(-2) (4) +0(-3) +0(2) |
MN3y=-8 1
- - 3 I
-k 01 2 4 Kk
-1 T '
in+1]
-2 4
-34 &

(i)
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h{4-k) n+1=5
When n=4 (or n+1=5) 4 f
Multiply the elements of Fig. (a) and Fig. (k) 3
W) =x(=1) h{-1) +x(0) A0) +x(1) (1) +x(2) M(2) +x(3) A(3) + = 2}
H4) = 1(0) +(=2)0 + 3(0) +(=2)0 + 0(4) + 0(=3) + 0(2)
}{4] =) 11
The result of the convolution is ~ o 4 N
-k o1 2 3 5 k
y(n) = x(n)s h(n) = {2, -7, 16, -21, 18,-8} 1l I
{n+1)
=21
-1 o
(k)

M 35 LINEAR CONVOLUTION USING CROSS-TABLE METHOD

Let us consider the convolution,
¥(m) = x(n)» h(n)
where x(n) = {x (n), x,(n), x,(n),...} is the input signal and h{n) = {h (n), A (n), h(A),....} is the impulse response.

The convolution of x(n) and A(n) can be performed as
%y (n) Xa(n) X3(n)

L
-
- L4

hy(n) xy{n)hy(n) .=~ xgn) hy(n) J,-";a{n} hy(n) .-~

- - -
L - -
- - -

- - -

- - -

hatn) [ xy()afn) =" gl gt} =" xafn) hglr)_, -7

-
-

hal) | %) hgln) =" xgle) gt} -7 xafm) hglr) -7

- = -
a - -
- L= -
- - .
L - e

Fig. 3.7 Convolution of x(n) and hin)

-

Procedure
. Multiply each row element with column element
2. Draw adiagonal line as shown in the Fig. 3.7.

3. Add the diagonal terms
wmy={x (m) b (n), {(x (m) h(n) +x,(n) B (n)}, 4(x,(m) By(n) +x (n) By} + x,(n) By (n)}, .
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SOLVED PROBLEMS _ __ __ __
Problem 3.8 Perform the convolution of x(n) and i{n), where x(n)={1,2,3,4} and A(n)={1.1,1,1}.
Solution - x(n) '
——
1 2 3 4
1 1 J.f"'z_,;"faﬂ;' 4 -
v T2 e e
= & - & -
E rl" ‘..l' i"' -I"
101 .72.73 .° 4.
171 T2 T3 e

Fig. 3.8
y(n) = x(n}* h(n)
}tuu}={l.{l+1},{l+2+3],{t+2+3+4].(2+3+4}.{3+4}‘4}
Mm={l, 3,6,10,9,7,4)
Problem 3,9 Perform the convolution of x(n) and Mn). x(n) ={1,-2, 3,4}, hin)={4,-3, 2,-1}

Solution
x(n)

h{n)

w(n) = x(n)* hin)
y(n)={4,-11, 20, -30, 20, -11, 4}

M 3.6 LINEAR CONVOLUTION USING MATRIX METHOD

In this method, the data sequences are represented as a matrix. 1f the length of signal x(n) is N, and the length
of the impulse response h(n) is N, then the matrix X can be obtained from x(n), whose order will be

(N, +N; =)= N, and the matrix H can be obtained from h(r), whose order will be N x1 such that ¥ = XH.
Let us understand the convolution using matrix method with the following examples.
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SOLVED PROBLEMS _ _ __ __ __ __ _ _ _ _ _ _ _ _ _ _ _

Problem 3.10 Find y(n) = x(n)* h{n) using the matrix method. x(n)={1, 2, 3, 4}; A(n) ={1, 1, .l. 1]
Solution |

1 0 0 0]
2100 -
3210 :
X=|4 3 2 1| H=
0 4 3 2 :
00 4 3 -~
00 0 4
(1 0 0 0] K 17117
Ilﬂﬂ.l. 241 3
3 210 1 3+2+1 6
Y=XH=|4 3 2 1|| |=| 4+3+2+1|=|10
ndszl 4+3+2 9
uuqz-]- 443 7
0 0 0 4] | 4 IRES

Problem 3.11 Find the convolution of the following data sequences using the matrix method.
x(n)={l,-2, 3,-4}; h(n}={4,-3,2,-1}

Solution
(1 0 0 0] 4]
2 10 0 o |-l
32 1 0 | |20
Y=XH=|4 3 -2 | =|-30
0 4 3 -2 21 20
0 0 -4 3|~ [-n
_!‘J 0 0 —4_ 1 4_‘

Problem 3.12 The impulse response of an LTI system is ﬁ[n}=(%]ﬂ u(n). Determine the output of the
system y{n} at
(iYrn==2 (1)mn=2 and (iii) n=+4, when input signal x{(n) = u(n).
Solution By convolution sum, '
' y(n)=h{n)*x(n} = x(n)* h(n) (Commutative property)

=3, x(nyh(n—k)

fm—on
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k=0
Forn=-2 w-2) =0
Forn=2
i l.‘:t 11 N p 1 a.'l'-l
)= — =— % 3 Hint o =
=33 =32 ; —
Hi-G) [_13
2 9[ 1-3 ] 9
Enrn-4

OV
P[4]=z(5]
k=0
1Y 1{1-3*) 121
4)=| = 3= =
wo~(5) & -5lv )5
Problem 3.13 A LTI system has the impulse response A{n) = &"u(n), | & < L Determine the output of the
- system when the input x(n) = w(n).

Solution
y(m)=x(nm)*hin) = hin)*x(n) (Commutative properiy)
yim= Y hk)x(n-k)
H=—mn
1 h(k)=a"u(k) _ x(K) = u(k)
1% 1 --
[ 110, HEERE
_ of 1 2 3 4 5 k D|1234ﬁk
Whenn <0
x{n=k)#$
un—k), k<0
A‘[n-k}:{ 0, otherwise N T ] I Ti
¢ kz0 -
hky=4 %>
(k) { 0, otherwise k-5 -4 -3 =2 =1 |0
!
n

Since x{n—k)and h(£) has no overlap terms, therefore output is zero, that is,
yin) =0, n<(
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Whenn>0
Tx(n-k)t

=Ir

yim) =3 hk)x(n—k)
k=0

Hﬂl=ia*,l . I I Ti T 1

=0 -k -5-4-3-2-1 [0 1
4+l
_ﬂ,,]=[ﬂ]
| —ox
0, n<0
= _ nel
yin) [I Ita} } n30
-

The lower value of x (n-k) is still exist in the negative x-axis, where as the value of & (&) is zero in these
region. Hence the lower value of summation takes the value 0. The upper value of summation is taken as
variable » due to the fact that # can take any value from 0 to on.

Problem 3.14 An LTI system has the impulse response’ h(n) = o"u(n), ‘D<a<I. Determine the output
of the system when the input x(n)=u(n)—u(n-10),

Solution '
k)= ku(n) ; hi{-k}}

14 &1

=y

|
iy

I
[#+]

]
%]

I
b
=]

B - T e y—— : =1
Q 1 2 3 4 65 6 7.8 9 10 11 12 13 14
$ u(n)
1“ [+ L= T -1 -1 £+ o [-} k- -1 L- ]
= [}
0] 1+ 2 3 4 5 6 7 8 9 10 1112
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&

%(k)=u{k)-u(k-10)

14 ¢ & o o o o o o o

P n

0 1 2 3 4 5§ 6 7 & B

neQ h{n=k}
o i
When n<0
ulk), 92420
1{*}={ .
0, otherwise ]. I
Fe g - .
A**r‘[ﬂ'—15:3l={':'fl » ks ) x —4 -3 -2 -1 |0
0, otherwise : t
' n

Since x(k) and #{(n-k) has no overlap terms, therefore output response is zero,
wn)= ix{.&}h{n—t} =0 n<0
- k=l
When 9 2 5 2 0 [range of i{n— k)iscompared with x(k)]

]
yimy="Y x(k)hin-k)
k=
gznzo| hn-kK)t

}'{ﬂ]=i&'"—i =RHEE_E
E=E

hur | nel ] !
y[n}=a"§[ﬂl)*=a" iﬁ:—-l— Hint i n_l'“NH ---"'H‘I T j l

aﬂ'l'i_l
) ¥ QEH}D

»n)=

The lowest value of h{n—k) still exists in the negative y-axis, where the value of x(k) is zero. Hence the lower
value of summation takes the value zero. The upper value of (n-k) can take any variable ‘»’ between 0 to 9, hence
it is simply n. Hence the upper value of summation takes the variable value .
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Whenn=>9

f>9 hin=k}t 1

o= === == gv“TTTTTII -

=k -4 -3-2-1 |01 2 3 4 5§ & T 10 11 12 Kk
|
n

g
wm= Y. x(kyh(n~k)
k=0

The lowest value of &{rn-k) exists in the negative x-axis, where the value of x(k) is zero. Hence the lower
value of summation takes zero. The upper range of A{n—k) has exceeded the maximum range of x(k), (i.e. 9),
hence A(n—k) becomes zero for # > 9. Therefore, the upper value of A{n-k) is limited to 9,

my=Yat .
yim=ea"y (fe)
yim=a' []—-M] n>9

1={l/e)
0, n<i
[~ mel
o M 9z2nz0
wm=4 | 1=Wa) |
i 1]
o | 20/a) ‘ n>9
=01/} ‘

Problem 3.15 Repeat problem 3.13 by interchanging the position of x{n) and /().
Solution

hk) x(~k) {
1% nuqnuﬁunﬁa‘T1

M p——a
P | S
B f——py

LR

———p——p
-k -10-8 -8 -7 -6 -5 4 -3 -2 -1 |0

3 =0
v
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Whenn<0
x(4-k) 4
2 & ¢ o & 9 o @ oa & 11
h{i]={a’uln}. k=0 |
0, mhemsse
un—-~k), k=n °
- k)=
wm=8) { 0. otherwise ) ,
- ~k -10-9 -8 -7 -6 -5 —4 -3 -2 =1 |0
wmy= Y hk)x(n—k)=0 * '
(n-9) n
Both fi(r) and x(r) have no overlap terms.Therefore output response is zero.
When 9520 ' i(d-k)t
" 8 & © a8 @ #1 9 5 9
wmy= Y, h(k)x(n—k)
k=0
H L
y[u}=Ea*=['1“n ] 9>n 20
4=0 - . 65 -43-2-1 001 2 3
(=8} I

The lowest value exists in the negative x-axis, where t}w value of x(k) is zero. Hence, the lower value of
summation takes 0. The upper range of x(/1-£) is well below the maximum range of s(£}, hence the upper value
of summation takes the variable value n.

When # =29
K(n=K)1

1 o -1 @ - - T 8 @

—k 01 2 3 4 5 6 7 8 9 10 11 12 K
n

In this case, the lower range of x(n—k) has exceeded the lower range of A(k), hence the lower range of
summation must be (n —9). The upper range of x{r-%) is less than the maximum range of #({k) (i.e.o<), the upper
range of summation must be n itself.

(n-9)

il i
wmy= Y h(mx(n-k)= 3 a

k=n-0 kmip-1
Letk—n+9=0=m

_}'{ﬂ) - Eﬂ.thi--'ﬂ
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ym=a'"3 o
m=dl

}'{ﬂ}=ﬂf"*[l a ] n29

-0
0. n<(
wal
}’{n}=-[l:fa ] 92 120
n
a"? 1|Pa ], nz9
-

Problem 3.16 An LTI system has the impulse response h(n) = o"[u{n) - u{n—4)] 0 <a<|. Determine
the output of the system when the input x(n) = [u(n) — u(n - 5)].

Solution
b x(k)=ul)-uik-5) ok
‘!1
14 & % o @ ' X
i 1
e i 1]
L 4 —T I -
0f 1 2 3 4 5 87 k o 1 2 3 4 5 8 7 k
& ufk) . s u(k-4)
LE - - L g @ &= . 1 ' - - % B
ol 1 2 3 4 5 8 7T Kk ol 1 2 3 & s K
4 xfk) = uik)-uln-k) # h(k) = cuk)-u(k-4)]
13
14 & « 1r B
0 1 2 3 4 5 6 7 Kk 00 1 2 3 4 586 7 k
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Whenn <0
L x{n=k)
L1
)=y Hk)xin-k)=0
k=0
87 6 5 4.3 -2 -1
in?ﬂl n
Both h(k) and x(n—k) are not overlapped, therefore, output response is zero.
When 3znz0
x(n-k)!
; P 1 o o
yiny=Y hk)x(n—k)
=il
ymy=Y, ot
k=0 . . —
| *x 3-2- |01 2 3k
y(n}=[|“aﬂ+ ].E:H:EI] ;
-a : (n—4) n

The lower range of x{n—k) exists in the negative x-axis, where the value of k(%) does not exist. Therefore,
the lower value of summation is zero, The upper range of x(n—-k) varies in the range 3 2 n 2 0 of A(k), hence the
upper value of summation is a variable n.

i

When T2znz3 L xin-k)
3 14 ¢ 9 9 g @9
ym= Y hk)x(n-k)
k={n=4}
3
ym= ¥ o
k=n-4
4 - - -
i} L I-» 00 1 2 3 4 5 68 7 Kk
Letk—n+4=0=m y{rr}:Zn"H=u'"*Zu" !
mrsll & sl
. (n—4) n
_}r{n}=r.r""[ T ] Tznz3

The lower range of x(n— &) has exceeded the lower range of k(k). Therefore, the lower value of summation

is {n —4). The upper range of x(n - k) crossed the maximum upper value of x(k), ie., 3 , hence the upper value of
summation is 3.
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When n2 8
4 tx(n=kj)
wWm=Y hk)x(n-4)=0, n28 51 e e e
k=4 r
0, n<0
[ ]EE"EU of 1 2 3 4 567 8 9 10 k
1T 2 3 4 a8 10
=1
[ ]73”23 (n—4) n
n=>8§

In this condition, both A{k) and x(n»-k) are not overlapped. Hence, putput response is zero. .

Problem 3.17 Repeat problem 3.15 by interchanging x(k) and h(k).
Solution 4 x(k) hi—k) 4

1¢ v o o @ F 1

1]

o 1 2 3 4 5 k X —4-3-2-1 |0

When n<0
ht"__hi.h
o +1
ulk), 4zk=z0
k)=
x(k) { 0, otherwise ‘
Lm=i}
fnin—n={“ o ken 1 I
0,  otherwise -k =6 =5 =4 =3 =2 =1 [0
{nIE} n

Both x(k) and A(n—£) are not overlapped. Therefore output response is zero,

Therefore, ym)= i x(kYh(n—k)=0
k=0
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When'32n20
: h{n-k}/

m=Y x(hin-k)y=Y a"*
k=0

k=0

i T

(1Y '_[E] - T — .

J—‘(ﬂhﬂ:"E[E] =a" — 7y [3%r20 k-3-2-1 o1 2 3 4 5 Kk
P 1_[_] - |

a {r.Ia] I

The lower range of {n — k} is in the negative x-axis, where x{k) has no value. Therefore, the lower value of
- -the summation is 0. The upper range of i(n—k) is above 0 but less than n = 4, hence the value of the summation

is a variable m.

~ When 42n23
n " : " 4 hin—k)
yom= Y xhin-k= Y ot ‘
k=n-3 k=n-} ir 8
Let k—r+3=0 ; '

y{n]=§n""’=ﬂ"gu‘” | [
-I_[é]‘- — -::I 1 3

42.:123 4
]_[l] . ) T ?
(14 {n=3) n

The lower range of h(n — k) has exceeded the lower range of x(£). Therefore, the lower value of tﬁe
summation is {(n — 3). The upper range of h{n - k) varies in the range 4 > n > 3. hence the upper value of the

summation is a varible n.
When T2n=4

ym=o

4 ; hin—k)t
ym= 3 xbhn-b= Y o iy ‘_

kmipp=1) k={n=1)

T—nt
OEDN-

=il

Let k—n+3=0

y(ny= E o™
v _ . [n_'_a}

ey ol

L
a f—

-k -3 -2 -1 |01

— B O

D th

]:.u-
- 1z2nz4
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The lower range of /i n—k) has exceeded the lower range of x(£). Therefore, the lower value of the summation
15 (n — 3). The upper range of h(n — k) varies in the range 7 2z n = 4. Since the upper range of i(n — &) exceeds
the upper range of x(k), the upper value of the summation is 4.

When n= 8
wh)=0 nz=8

Kt n<0 o
-] .I wil ] L

wl—22)_|35,50 [ =)
l_[i) . +1 y
= n -
()

J_r{ﬂ]:qaa *:'II d2nez3 —
1-[5] 01 2 3 45 6 7 B 8 k
| [1j';' oly |

o | —EL 172024 '
(3
s tI e
0 nzg

Both x(k) and k(n-k) are not overlapped. Therefore output response is zero,

Problem 3.18 An LTI system has an impulse response fi(n) = u(n + 1) — w(n — 10). Determine the output
of the system when the input x(n) = —u(n) + 2u(n - 3) — 1(n - 6).
Solution

4 u{n+1)

L)

-1

|

2 10 1 n
F u{n-10}

| L]

ﬂ123455?390111213n

|

7
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h{n) = u{n+1)}-u(n-10)

0of 1 2 3 4 5 6 7 8 %
~u(n-6)
1 2 3 4 5 68 7 8 9 10 11

l
_1
i ]:[“} = LI[JI]IEI.I{II 3} U{“ E]

1]

F
I
|

a¥

i

+ (k)

+"“.

j =i

3 4 5 67 8 9

h(-k)

RRAnERIN

m_.—q
e f———

(3 ) P
o

q{

b

il t

(n—9)

-6 -5 -4 -3 -2 -1

— ok g

(n+1)



When (n+1) <0

I,
x(k)y=1q+l,
0,

k=0,1,2
k=3,4,5
otherwise

1, &<li
0. elsewhere

h{n-t}={

W)=Y xkyhn—k)

k)
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hi{n—k)]

Both x(%) and i(n—k) are not averlapped for (n+1) < 0. Therefore, the cutput response becomes zero.

yiny= 10
When 22(n+1)20=12n2-1

i+l hin=k)

wn)= Y, x(k)h(n-k) y
3 L
n=l

wWm)y =Y (=1 (+1) .
k= - =0 -8 =F 6 -5 4-3-2-1 101 2 3 4 k
n+l L .

W) ==3 1=~(n+2) o)

k=il

When S2(n+1)23 = 4z2znl

e}

ymy= 3 x(k) h(n—k)

L)

pmy= Y x(k)yh(n-k)+ 3, x(k}in~k)
=}

]
el

2
yimy= 3 (=DEFD+ Y00
=

k=1

w4l

pX ()

k=3

wmy=Y -1+

Laq)

Hn)=(n-4)
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When 92 (n+1)26 = 82n25

k]
yim=Y x(k)hin-k)
k=0

2 5
ymy=Y x(kYh(n—k)+ 3 x(n—k) h(n—k)
k=3

h{n-k) |

|

h{n—k} %

= j X3 2
wmy=3 -+ Y (N=-3+3=0
k=0 k=3 _ (n-9)
When 12z2(n+1)z0=112n29
5
ymy= Y, x(k)r(n—k)
- k=(n=9)
2 ;]
ym)= Y x(k)h(ri-k)+ Y, x(k)(n~ k)
k=in-9) k=3 , _i_2_1
2 5
wWm= 3 D+ Y M=—[2+1-(n-9)]+3
k=im-9) k=3
y(m)=(n=-9)

When 152(n+1)213=142n212

h{n—k)

5
ymy= Y x(k)h(n-k)

ks{r-9)

5
yiny= "% (D=-n+15

k={n—9)
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When {n+l_}zlﬁr.:ruzis

i

8 10 11 12 13 14 15 16 k

:‘.'.
(=3
48]
[ %]
b
o]
=]

{n-9) (n-1)
Hm=0
There is na overlapping of x(k) with h(n-&). Therefore, output response is zero.
) 0 n< -1

-(n+2) -1€n<l
n+4 2en<d

yn)=410 Ssns9
n-9  10snsll
15-9 12sns14
0 n>l4

— ——

—ran mam A ammar

M 3.7 STEP RESPONSE

B_'-,f using the convolution sum, we can easily represent the step response in terms of the impulse r:sp-unse Let
us consider the output response of the system y{(n) as, .

w(n) = x(n)* h(n)= E x(kYn(n—-ky= 3 h(k)x(n-k) (3.27)

km—w k= —ea

whr.r:, x(n) i is mput signal and h{nl is impulse response of the Sﬁth‘-ﬂ

The step response of the system, means. applying a unit step function as a slgnal to the system, that is,
x(n) = w(n)

-

1. n2k

. hz0
where ) {{} otherwise n=f)= {I]. otherwise
Then, step response  S(n) = Z (kyuln-k)
o wl}
S(n)= Y h(k) (3.28)

&l )
Equation (3.28) explains that the step response is the impulse response.
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SOLVED PROBLEMS

i —— — —— —— — — — — — — — i — —— — SR N CEESS S R

Problem 3.19 Find the step response of the system if the impulse response is h(n)=a"u(n),0<a<l.
Solution The step response of the system is given by,

S(n) = h(n)*u(n}
S(n)= 3 h{k)u(n-k)

kz—on

S(m =Y [a"u(k))uin-k)
Kot
H I_ﬂ.lHrl

5 = ko

(n) E:ﬂ —

Problem 3.20) Find the step response of the system if the impulse response fi(n) =8(n-2)-d(n-1).
Solution The step response,  &(n) = hin)*u(n)
S(n) =[8(n—2) - 8(n—1)]*u(n)

S(n) =[8(11—2) *u(m)] ~[6(n —1) * u(m)]
Sm=un=2)=uln=1)

B 3.8 DECONVOLUTION

Deconvolution is “undo™ procedure of convolution. In order to understand the deconvolution, let us consider
an ideal system whose impulse response is A(#) and system output is y(#). This relation is expressed as,

i) = x{n)+ hin) (3.29).
where x(n) is the input signal.

The basic problem of deconvolution is to find x(#) by deconvolute A{n) with y(n). Deconvolution has

many practical applications, such as input pressure measurement by considering the output of the systems and
system response.

By the definition of convolution sum as,

n
=Y x(myh(n—m) (3.30)
i)
Let us expand the convolution sum for n=0,1,.... o

W0y =x(0) A(0)

y(1)=x(0) h(1)+x(1) h(0)

¥(2) = x(0) hi2)+x(1) A(1) + x(2) h(0)

Y3} = x(0) A(3)+x(1) A(2)+x(2) h(1)+x(3) HO)
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The matrix form of above equations,

[y(0)] [A(0) 0 0 0 0] [x(0)]
| | HD  K0) 0 0 0§ x(l) _
C | X2 =1 M2) A1) A0) 0 0| *(2) (3.31)
y3)y| 1A3) K2y K1) K0) 0] x(3)
R ; P : I |
The input signal x(») can be directly computed by considering /(1) and y(n).The equations can be rewritten as
_ 20
T
y(1) = x(0)h(1)
=
) m0)
m0)
«(3) = Y3 = X(OHG) - x(1)h(2) - (A1)
H0)
=1
y(m= 3, x(m)(n-m)
x(n)= "’ﬂh{u] (3.32)

Equation {4.32) is called the general deconvolution equation.

SOLVED PROBLEM __ __ __ __ __ __

Problem 3.21  What is the input signal x(n) that will generate the output sequence y(n)={1,5,10,11,8,4,1}
T

for a system with impulse response h(n)={1,2,1} (AU April 2003)
T

~ Solution

¥(m) ={1,5,10,11,8,4,1}; h[n}={1!.1. 1}
T

The total number of samples in the output response is ¥ + N,—1=7.
The number of samples in the impulse response is N, =3.

The number of samples in the input signal is N, =7- N_+1=3.
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Let us consider the general.decunvnlutiun equation

n-1
yimy= Y, x(m)in—m)

—_— mresl}
xn= 70)
= —ﬂ =l=
For n=0, x[u]_ﬁ[ﬂ] I ]
= x(0)A(1 5—=1x2
For n=1, . x-:u=*‘”£;}‘”f SR N
For n=2, 1{2}=H2]-I[ﬂ]ﬁ{1}—x{l}h(l) =lﬂ—|:ﬂ.’|-3:~:2'3
h(0) |
For n=3, x3)= W(3)=x(0)h(3)— x(1)i(2) - x(2)h(1) _ 11-1X0~3x1-3x2 -3
h(0) 1

* For n=4, +(4) = 1(4) = x(0Y(4) — x(1V(3) — x(2){2) — x(3)h(1)

h(0)
_8-1X0-3x0-3x1-2x2 -
- : =

The input sequence isx(n)={1,3,3,2,1}.

1

B 3.9 BASIC SYSTEMS

The system can be broadly divided into two categories. They are

1. Finite impulse response system
2. Infinite impulse response system

Finite impulse response (FIR) system is one which exhibit zero response outside a finite time interval,
Example
4 hin}

hm={ 1< e L LTI

0, otherwise +N n

ke Finite duration ———+
Fig. 3.10
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* Infinite impulse response (IIR) system is one which exhibit an impulse response of infinite duration.

Example
4 h{n)
1t :
h(my=1° szl : _
0, otherwise I ] T_.—hhndtnrnrmtn

—

ol 1 2 3 4 5 n

|&—— Infinite duration ——»|

Fig. 3.11

B 310 LINEAR CONSTANT COEFFICIENT DIFFERENCE EQUATION

The difference equation generally represents the relationship between the input and output signals for a
system. The Nth order difference equation is

N L)
éﬂ;r{nukhéhr{mi} (3.33)

The equation (3.33) can be rewritten as

N M
aﬂy{n}+2w{ﬂ-ﬂ = Eb*x{n-k]

y(m) =—E-‘J x(n—k) - ;Eﬂ:ﬂﬂ k) (3.34)

Gy k=g
where a,= 1, is a constant.

The output of the system can be obtained from the input and past output signal. This is clear in :quauun
(3.34). Hence, for most discrete-time system implementations, we use equation (3.34).

3.10.1 Scolution to Linear Constant Coefficient Difference Equation

It is convenienl to express the output of the system described by a difference equation as a sum of two responses:

I. Natural Response (3**)

2. Forced Response (3*")
J. 1001 Natural response

The natural response of the system output can be obtained by considering the initial conditions. While
calculating the natural response of the system output, the input is made zero. Therefore, the difference equation
(3.33) is reduced to homogeneous equation, which is given by

I
Y ay™(n-k)=0 | (3.35)

k=
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where superscript ‘()" represent the natural response. The natural response y*(n) is the solution to the
homogeneous equation and is given by

f yy(m=A" (3.36)
where A is N roots of the discrete-time system.

Substituting equation (3.36) in (3.35), we get
N

Za’,l”'* =0 | (3.37)

. k=0 |
a A" +ad" +a, A"+ +a, " =0

AVAN g A" e @A wvay ) =0
Since A"¥ %0
A va ¥ va ¥ e vay =0 (3.38)
Equation (3.38) is the characteristic equation of Mh root.
Case (i) Ifroots A;,4,,4,.... aredistinct.
The general solution to the homogeneous equation whose roots are distinct is

yu(n)=CA] +CA; +Cidg +..+Cyd7 (3.39)

Example If roots are distinct, say 4, =4 and 4, =6, then according to equation (3.39), the solution to the
homogeneous equation is y,(n) = C,(4)" + C,(6)"

Case (i) [froots are repetitive.
The general solution to the homogeneous equation whose roots are repetitive m times is
yiu(m = ANC, +Can+Con” +Cyn” +...+Con™™") (3.40)

Example If A, =8 repeated 2timesand A, = 4, then according to equation (3.40), the solution to homogeneous
equation is

ya()=(C, +Cyn)(8)" +C5(4)"
Case (iii) Ifroots are complex.
The general solution to homogeneous equation whose roots are complex, i.e. A, =a+ jbandA, =a—- jb
is '
ya(n) = r" (4 cos n+ 4, sin nd) (3.41)

where r=+a® +b

-}

A, A, = constant coefficients
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Letn=0,
5
w0y = p —y(=1) -—J‘(-E}
5 2
'D = —
no) 6 6 3
Letn=1,
1) =2 5(0) -+ yi-1)
- 6 ]
52y 1 7
== =|=====
nh 6[3] 6 18
Substitute the value of »(0) and ¥(1) in the equations (4) and (5) respectively, we get
2
C,==
. G+G B
I I 7
—C +=C, =—
2 T3
On solving, we obtain C,=LC,=-113

Substituting the values of €, and C, in equation (3)

Y iy
F&{"}-'*[E] _E[E}

which is the natural response of the given difference equation.

— e e — — A s e amm a - —

3.10.1.2 Forced response

The forced response of the system output can be obtained by considering the input signal alone (initial
conditions are assumed to be zero). The forced response consists of two parts

(1) Homogeneous solution [, ()]

(2) Particular solution [, (n)]

The particular solution is denoted by ¥ (i) and it represents the solutions to any difference ::quur,mn when
the input is given. The particular solution _1-' [n} can be obtained by considering the input signal x(n), n 20, i.e.

yp{ri]=-Eakyﬂ{r:—k}+ Zbkx[n—k] _ (3.42)
ksl k=0

The following table shows particular solutions for some of the standard signals.
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Table 3.1 Standard Particular Solution

Input Signal Particular Solution
x{t) Yp(n)
Step signal, A K
A" Ka"
An" ko™ + k™ 4 k™ Lk,
AE?E{M"'M} k; cos wn+ k, sin wn
A sin{an+ @) B

The forced solution of the system is obtained by adding both the homogeneous and particular solutions.

SOLVED PROBLEMS . o e o e e e e
Problem 3.23 Find the forced response of the system described by the difference equation
H) =2 31=1) = 3(n=2)+3{m) = 0 1)

when the input signal is x(n)=2"u(n).
Solution

.V{n]=§J’{H-I]—éﬂn—1}+x{n‘.i—xtn—I]

1 .
,win}—%}'{ﬂ-lhgﬂﬂ—ijl=~r[n}—r(n-l} (1)
For input signal x(s) =2"u(n), the particular solution from the table 3.1 is of the form
vpny=K2" (2)
Substituting equation (2) in equation (1), .
HIH _E:F:zn—l +1ﬁ-1u-r1 =E" _2"—] | {3)
6 6 .
Obtain the value of ‘K" of equation {(3) by substituting any value of *n’".
Letn =0, '
K2" -EKZ" +1K2'] =2"-2"
: 6 6
K=2
5

Therefore. the particular solution is given by

4 '
¥p(n) =§(2}" (4)
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The homogeneous solution (obtained from equation 3.36) is

y{n) —%y(n— I‘j+%y[n—2} =0 [input signal, x(n) = 0]

The solution to the homogeneous equation is

J’.I.{ﬂ]=-l"
Therefore PP LI T B
' 6 6
(-2a0d)-
A {J. E.H& =0
Since 1" 20 lz—£l+-l——'ﬂ
=0 6" "6
I |
A-=|l1-=|=0
(+-3)2-3)
| N
172 Ae 3

Since the roots are distinct, we use equation (3.39)
I_ n . ] L
Yu(n)=C, [E] +( [3‘]

Yy =y () y ()

gy = l)ﬂ [L)ﬂ i "
y ' in) [C,[z +C, 3 +52

: 4
Letn=0, yoy=c, +Cytyg

I, 8
= U = =C 4=, 4=

The forced response is given by

Let us consider equation (1).

J’(H}"%H”- IH%HH-E] =x(n)=x(n=1)

I
Forn=0, .}'{ﬂ}-g.}'{-ll+gﬂ‘1}=I{'U'}-I{-ll

(5)

(6)

(7)

(8)

Since initial conditions are assumed to be zero for calculating the forced response, y—-1) = 0; ¥(-2) = 0;

x(-1)=0.
Consider the input signal, x(n) = 2"
Forn=10, w0)=1

Therefore, equation (8) can be written as

. Wo)=1
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Similarly, for #= 1 in equation (1),

=230+ 3D = 1(1) = x(0)
J{I}-%{I]+ﬁ=2—l [Since x(1)=2]
1
»l) ry
Substituting the values of (0) and »{1) in equations (6) and (7)
. 4 _
C,+Cs + 5" 1
G, 3.1
2 3 5 6
-4
C| — i.r:z —_5'_

Substituting the values of C', and C, in equation (5),

Uy = ,'_]"_ﬂ[l]n 4,0
¥ i n) {2 503 _+5 nz0

3.10.1.3 Complete response
The complete response of the system can be obtained by adding both natural response and forced response.

wWm) =y + 3 N (n) (3.43)

The complete response can be obtained directly without separately finding the natural respnnsn and
forced response as we did in Problems (3.18)and (3.19).

SOLVED PHHHLEHS _________________________

Problem 3.24 Find the complete response of the system described by the difference equation

_'p[n}=iy{n-—I]—l_}'{nul}+r{n—-lj—x[n—l}
when the input signal x(n) = 2"::{:1] The initial conditions are y(- I]-tand y(=2)=1.

Solution

yin)= i_J.-{i':e- I}-ly{n =+ x(n)=x(n=1)
6 6 (1)

The complete response of the system
ym) =y (my+ y ()
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To obtain natural response set input signal to zero, i.e.

5 I
wmy=—yn-1)-=y(n-2)=0
_ 6 6
The solution to the homogeneous equation is of the form

yp(n)=A4"
Therefore, equation (2) becomes

3 In-l

A A At =0
6 6

.l""[.lz -314-1]:0
6 6

The solution to the homogeneous equation is

wore(3) (3]

To obtain the forced response, consider the input signal x(»), i.e.
5 1
ymy =z yln=N)+2yn=2)=x(n)=x(n-1)

The solution to the particular equation is of the form [from Table (3.1)]
. yo(n)=K2"
Therefore, equation (4) becomes

n_3 !

K2 K2t 4= g o pn el
G 6

Obtain the value of ‘K of equation (5) by substituting any value of “»’, which results in
Letn=10,

K2" _3 K2 +l K27 =2"-2"

] b
4
K=-
3

Therefore, the solution for the particular equation becomes
4
ny==2"
Yp(n) 5

(2)

(3)

(4)

(5)

(6)
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The complete response is sum of the homogeneous solution and particular solution,

yn) = y,(n)+ y, (n)

4 1y 1y
_;,-l[n]=32“ +Cl[5) +E2[i]

Forn=0, y{ﬂ]=%+£'|+l:'1
Forn=1 y{|]=£+c(l]+g [l]
‘ | s '\2) 3
To obtain the value of ¥(0) and (1), let us reconsider the difference equation (1).

y{n}=§y{ﬂ—l}——;-y{n—ilﬂfn}—x[n—ll
I{H}IIZ.: x{'ﬂ}:] -
x(1)=2; x(~1)=0(not given)
Forn=0, ym:n=%.v{-1:u-%yi-z}+x{m-x{~1:-

Now substituting initial conditionsy{—-1)=1and wW-2)=1

ytmim-%mﬂ-ﬂ

¥o)=

LA s | La e

Forn=1, ¥ =25(0) --é—y{—l}uuzr—xm}

MNow substituting initial conditions W—1)=1and W(-2)=1

y{l}=3[3]—%{11+:-|

63
20
] _-—
w(l) 5 |
Substituting the values of »(0) and »(1) in equations (8) and (9) respectively
5 4
3 5
20 8 1 |
—=—=+=C+=C
9 5 2 ''3°°
. 17
On solving, C, =2 C =5

Therefore, the complete Fespr.:-nse of the system is given by

4 n l ﬂ_hE l 4}
yiny=52 H[z) 15[3]

(7)

(8)

(%)
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Problem 3.25 Find the system response described by a difference equation
1
y(n) =3 yin=1)=x(n)

when thc}nput signal x(m)=sin2n Initial condition y{-1)}=1.

Solution The difference equation is I :
‘Hn}_i wWn=1)=x(n)

The complete response of the system is '
yin) = yy(n)+y,(n) .

To find the solution to the homogeneous equation, set the input signal x(n)} = 0.
Hm=2 (1= =0
The solution to the homogeneous equation is

yyn)=A"
The homogeneous equation becomes

Therefore, the solution of the homogeneous equation is

1Y
}'ﬁfﬂ'l'=l':-(:]

To obtain the forced solution let us consider the input signal, x(n)=sin2n

$m) = y(n=1) = ()

The solution to the particular equation is
Yp(n)= K, cos2n+ K,sin2n

(K cos2n+ K4 sin in}v-*;-[ﬁ:, cos2(n=1)+ K, sin2(n=1)] =sin2n

Hint cos(A - B)=cos Acos B +sin Asin B

sin{A4 - B) =sin Acos B -cos Asin B
e
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Kycos2n+ K,sin2n *%[h‘limslﬂ cos2+sin2n sin2)

+ K(sin2n cos2=cos2n sin2)] =sin2n

Kicos2n+ Kysin2n -%mslﬂ cos2

K, . Ky K . .
—T'sm 2n sin 2-—13-s:n 2n r.nsz+—;-mu 2n sin2=sin2n

On comparing left hand side and right hand side terms,

K,mﬁiﬂ- > —Lcos2 cm!n+%cu&2n sin2=0
cus.?n(.‘i,—{-'—cus2+£13-sin2]=ﬂ-
K,—ﬁmsl+ﬂsin1=ﬂ

2 -2

SR

1.208K, +0.4547K, = 0

Similarly,
K;sin2n- 7 5in2 sin2n— 5 cos2 sin2n=sin2n
KI—EJLsin2~£21m2=l

" sin2 cos 2
k(-5 )k (1-252 )=
- 04547K +1.208K,=1
On solving equations (1) and (2),

-

K,=-02729:K,=0.725
Therefore, the mlunnn to the particular equation is

y.,.(n} ==0.2729 cos2n+0.725 smzn

The complete response of the system is
y(n) =y, (n)+y,(n)

y{n}=C[%I ~0.2729cos2n+0.725 sin2n

Forn=0, W0)=C-0.2729

e LTH4T

(1)

@)

(3)

(4)
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To find the value of w(0), let us consider the difference equation

1
Hﬂ}—i.ﬁiﬂ =1}y =x(n)
where x(n)=sin2n
. Formn=10, x(0)=0

y(0) =%}'["|} +x(0)
l
v(0) =3

Substitute the value of y(0) from equation (5) to (4)

%:C-D.ITEQ or C=0.7729

The complete response of the system is given by

14" .
vir)= D.?TZH{E) ~0.2729¢cos52n+0.7255in 2n

Problem :l.?ﬁ Find the system response described by a difference equation
y{n}—%y{n-]ﬁéﬂn—?} =2 fornz0
The initial conditions are y{-1)=2 and v{-2)= 3.

Solution Giventhat

7 !
n)y=-—yn=)+—=y(n-2)=2
yin) 12 yin=1) 12 yin-2)
To obtain the natural response, set the input signal to zero.
The homogeneous equation becomes
() l}l‘{ﬂ—l]-{-L (n=2)=12
AT 12”7

The selution to the homogeneous equation is

yulm)y=24"
The homogeneous equation becomes
i T n=| 1 =1
A=—A" +—A"" =0
12 12

A*‘-*[a,hl.h'—]:u
27712

(3)

(1)

(2)

(3)
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7 I

5 [T : ‘1. ___l .
Since A" 20 2
) lJ
A= -,!;:
Since the roots are distinct. the solution to the homogeneous equation is
. r/ |_ A .I JF.'
? =0 - : +[- -_.' -
J'r{”} I-|‘H3 _rr {4 {.4'}

To obtain the forced response, let us consider the input signal, which is a step signal who-¢ amplitude
is 2, that is, x/n)=2w(n).

The particular equation becomes
7 |
_ yin}—Eftn-l}+Eyin—Il=lu{n) , (5)
The solution to the particular solution [from Table (3.1)) becomes
Yy = Ku(n) (6)
Substituting equation (6) in equation (5)

HH[H}“%KE[H"]]-FLK uln—2)=2uln)

h-—K+Lh 2

12
K=4
Therefore, Yp(n)=4 un)
The complete solution of the system becomes
yin) =y, (n)+y ()
viny=C, G—] + [%J +4 w(n)
Forn=10, i =C+C;+4 (7)
Forn=1, J)=1C 4 Cy +4 (8)

In order to find the values of w(0) and y{1), let us consider the difference equatio
7 I
-— -_])—— =142
»in) u}*{n ) ]I.H'ﬂ )
7 1
= 0= — p[=1)= — 1 (=2)+2
Forn=0, ¥iu) II'P{ ) ll'ﬂ )+

»0) =|1;l= 29167
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: _I'E'l _'—I- L
qun=h .'l"ﬂl'-u.'l’{“] 11"'"{ Iy+2
y{l}-n(lz) |2[1]+2 3.5347

Substitute the values of {0) and y{1) in equations (7) and (8),
29167=C +C +4

35347 = LC +5C +4
303

We obtain, C,=2.3337.C,=1.2504
~ Therefore, the complete response of the system is given by

y(n}z{lﬂﬂ[&]ﬂ+I.Eﬁﬂ4[%]l+4}u{n]

E 311 ‘INTRODUCTION TO CORRELATION

The correlation is another mathematical operation to measure the degree of similarity of any two signals/
images. Correlation is used in RADAR, digital communication, remote sensing engineering, ete.

Let us explain correlation with respect to the following example. The signal sequences x{n) and y{n) are the
transmitted and received signals respectively.

Fig. 3.12 Target Detection Using RADAR
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If the target is present in the space during RADAR search, then the received signal y(n) is the delayed

input signal x(n— D}, i.e.,
wn) = r..':'.r{n ~ DY+ wim)
where o= attenuation of sigﬁal x(n)
win) = additive noise pick up along with the signal at RADAR
D = delay factor

The delay is directly proportional to the distance between the RADAR and the target. In practice, the
received signal x(n -D) is heavily corrupted by the additive noise to the point where a visual inspection of y(n)
does not reveal the presence or absence of the desired signal, Correlation helps us to extract this important
information from y{(n).

3.11.1 Cross-correlation

Let us consider two different signal sequences x(n) and y(n) which has finite energy. The cross-correlation of
x{n) and y(n) is given by,

Y. (m)= i x(myyin—m),m=0,£1,£2, £3, ... (3.44)

or equivalently

Y, (m)= i:{n+m}_}r{n1m=ﬂ.tl.ﬂ.i3,... (3.45)

where, m = |lag parameter

The subscript parameter ‘xy" in 7, indicate the direction in which the sequence is shifted by m. In
equation (3.44), the signal x(n) is unshifted while y(n) is shifted by ‘m’ units to the right (m is positive). In
equation (3.45) the signal y(n) is unshifted while x(n) is shifted by ‘m" units to the left (m is negative). Both
equations (3.44) and (3.45) are identical, that is, both relations yields identical cross-correlation sequence.

Reversing the roll of x(»#) and y(n) in equations (3.44) and (3.45) result in eguations (3.46) and (3.47)
respectively.

V. (my= Y y(m)x(n—m), m=0,+1,+2,43, ... (3.46)

or equivalently

7 (my= 3 x(md(n+m) m=0, 21, +2 23, ... (3.47)

i

On comparing equation (3.44) with (3.45) or (3.46) with (3.47), we conclude that
Y =Y (—m) (3.48)
It is clear from equation (3.48) that v, is the folded versionof 7., .

If the length of the sequence x(n) is ¥, and the length of the sequence y(n) is ¥, then total length of
correlation sequence is N, + N, -1.



LTI52 e Digital Signal Processing

The major computational difference between convolution and correlation is that in case of convolution,
one of the sequence is folded, then shified, then multiplied by the other sequence to form the product sequence
for that shift and the product terms are added. In case of correlation, except folding all other process remain the
same, that is, one of the sequence is shifted, then multiplied by the other sequence to form the product

sequence for that shift and the product terms are added. Mathematically, the correlation and convoelution can
be related as - ' '

¥ = X(12) % y{(—m) . - (3.49)

SOLVED PROBLEM

Problem 3.27 Determine the cross-correlation sequence of the sequences

x(n)={1,2.3,4,5}; y(n)={5,6,7,8,9}
T T
Solution
Let us consider equation (3.44)

Yo lm) = Z x(n) yin=m)

For the given problem equation (1 ) reduces 1o

F

Yo ()= E x(n) y(n—m)

When m =0

1

Yo (0)= 2 x(n)y(n)

dim=]
For m = 0, the cross-correlation is the product of x{#) and y(n) and sum of all the products, that is,

T o A0V =x(=2) y(=2)+x(=1) p(= 11+ x(0) (0} + x(1) (1) + x(2) »(2)
Yo (0)=1%5+2x6+3xT+4x8+5x9=115

When m = |
Y, (= Z'x{r:}_}-[n—i]
ra=1
Yoy (1=(=2) p(=3)+ ¥{=1) p(=2)+ x(0) y(=1)+ x(1) p(0)+ x(2) y(1)
Yo (D=0+2x5+3x6+4xT+5%8 +0=96
Whenm=2

s

Yo (2)= 3 x(n)y(n-2)

el

¥y (2)= 2(=2) (=) +x(=1) (=3} + x(0) y(=2)+ x(1) p(= 1)+ x(2) ¥(0)
Yo (2)=0+043x5+4x6+5xT+0+0=74
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When m =3
Y, (3)= E x(m) y(n=3)

1,3 = x{-l}}'[-ﬁl+x{—11y{-4}+-t[ﬂ}f[~3)+x(|]y{-1]+x{2}}'[“1}
¥, (3)=0+0+0+4x5+5x6+0+0=50

When m =4 .
7, @)=Y x(n)y(n-4)

me=]
¥,y (3)=x(=2) y(=6)+x(-1) Y(=5)+ x(0) y(—4) +x(1) y(=3)+x(2) p(-2)
¥, (4)=0+0+0+0+5x5+0=25

Whenm=5
1
Y, (5)= 3 x(n) y(n=5)
A=)
7,4 (5)= x(=2) y(=T)+ x(=1) p(~6) + x(0) p(=5) +x(1) y(-4) +x(2) y(-3)
Y, (5)=0
Yo k2 51=0

When m=-1

Yo (-D= E x(m)y(n+1)

me=i

Yo (=1 =x(=2) ¥(- I}+xi-l]f{ﬂ]+xml}{l}+x{!]}ﬂ}+x[2m3}
Yo (=)= =1 x6+2x7+3%8+4x9+ 0=80

When m = =2
1
Vo (=2)= 3, x(m) p(n+2)

aw=1

T:r(‘z:'=1(-3]J'Iﬂ)+1[-1]y(1}+ x(0) y(2)+x(1) p(3)+ x(2) ¥(4)
Yo (=2)=1xT+2x8+3%9+0+ 0 =30

When m = -3

¥, (3)= 2, x(n) p(n+3)

7, (=3) = x(=2) p(1)+x(=1) J(2)+ x(0) y(3)}+x(1) y(4) +x(2) ¥ (3)
¥, (=3)=1x%8+2x9+0+0+ 0=26

Whenm =-4

i
7, (=)= 3, x(n) y(n+4)

FEr

¥ (=) = x(=2) y(2)+ x(=1) ¥(3)+ x(0) y(4)+x(1) ¥(5)+x(2) ¥(6)
¥, (A =1%9+0+0+0+ 0= 9
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When m = =5

7, (=5 = Y x(n)y(n+5)

-
mm=3

Yo (=5) = x(=2) p(3)+ x(=1) ¥(4) + x(0) y(5)+ x(1) y(6) + x(2) ¥(7)
1a(-5)=0
Y, (m==35)=0
" Therefore, the cross-correlation sequence of x(n) and y(n) is
7., (m)={9,26,50,80,115,96,74,50,25}

3.11.2 Autocorrelation
Ifw{r) = x(n) then equation (3.43) and (3.46) reduces to

Y=Y x(n)yx(n-=1)

A= -

or equivalently

Yo ll)= 2 x(n+l)x(n)

Equations (3.50) and (3.51) are the autocorrelation equations of the sequence.

3.11.3  Properties of Cross-correlation and Autocorrelation

Let us consider two data sequences x(n) and y(n) whose linear combination is given by

Z(ny = Ax(m)+ Byln-1)
Where, 4 and B are scalar

! is the shift
The energy of the sequence Z(n) is given by

£=Y Z'n)

E=Y [Ax(m)+By(n-D]

On simplification,

E=4* i )+ B i yiin-N+248 i x(m)y{n=1)

Mm— WaE e [ E Tt

E=Ay (0)+B'y (0)+24By (D)

If the energy of signals x(n) and y(n) are finite, then the energy of Z{n) must also be finite, that is,
E=A'y (0)+ By, (0)+248y,, ()20

(3.50)

(3.51)
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On simplification, by inequality
v, (]S Jra(0)+7,(0)  (Proofis left to the reader)

[f x(n) = y{(n), then

Yy (0|57 (0) =E,

The autocorrelation of sequence attains maximum energy condition at zero lag (that is, /= 0).

SOLVED PROBLEM " _ __ __ __

Problem 3.28 Find the cross-correlation of two finite length sequences x(n) = {1,2,3,4} and y(n) = {5,6,7,8}.
Solution '

x(={1,2.3.4); ¥-N=1{8.7.6.5)

By definition, ¥, (D=x(I)* y(-I)

a?aaﬂ—l}
1 B ‘ ? ;ﬂ'ﬁ F 5 '

2 b '15; 1:1:1?-'1?

f
# ] # ’

x(l) 3 ,’24’;"21,-15,* 15.¢
# - # P
FJ fﬂ " ¥
4 132,728.724 .° 20
d .7 #
P #
¥

Yo (D={8.16+7, 24 +14+6, 32+ 21+12+5,28+18+10, 24+15, 20}
7., (={8.23,44,70,56,39,20}

CHAPTER SUMMARY

*  Any signal can be represented as a time-shifted impulse sequence.

¢  The convolution gives the relation between input signal, impulse response and output response, It also
explains how output response is obtained from input signal when it is passed through a system impulse

response. The convolution sum is denoted by y(n)= Z x(k){n— k)= x(n)*hin).
e e

®  The LTI system saiisfies basic three properties, that is, distributive, associative and commutative properties.

e Distributive property: x{n)*[h (n)+ hy (m)] = x{n)* Iy (1) + x(n)* hy(n)
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» Associative property:[x(n)* K (m]*hin) = x{ﬂ]"".[-‘ﬁ (n)* hy(n)]
»  Commutative property: [x(n) * h(n)] = [h(n) = x(n)]

o The procedure for linear convolution is as follows:
. Plotboth x(k)and h(k).

Reflect h(k)about = @ to obtain k(=k).

Shift &{—k) by n(toward left).
Let the initial value of n be negative,

Multiply each element of x(k) with fi(n~ k) and add all the product terms to obtain y{(n) .
Shift A(n— k) by incrementing the value of # by one and so step 5.

- T N

Do step 6 until the product of x(k)and h(n - k) reduces to zero.

*  The solution to the difference equation is analyzed by considering natural response and forced response.

* The natural response can be obtained by considering the initial values alone. The input signal to the
system is assumed to be zero. The natural response can be obtained by solving homogeneous equation.

* The forced response can be obtained by considering the input signal alone. The initial values of the
system are assumed to be zero. Thn: forced response can be obtained h}r solving homogeneous equation
and particular equation.

®  The correlation is another mathematical operation to measure the degree to which the signals are similar,
The autocarrelation refers to the correlation of same signal where as cross-correlation refers to the correlation
of two different signals.

*  The cross-correlation of two different signal sequences x(n) and () which has finite energy is given by
= zx{n}yin-m}, m=0,%1,%2,...

» The autocorrelation of a signal sequence x(n) is given by V()= z x(mx(n={), I=0,tL12,..

REVIEW QUESTIONS

Define convolution sum.

Derive an expression for convolution sum,

Explain the properties of convolution sum.

Express the following signals in terms of impulse function.

(a) x(m)={0,2,4,8,10}

(b) x(n)={4,2,3,0,1,4,7,9,12}
5. Define invertibility of LTI system.
6. Define stability in LTI system.

i



